Imbalance problems in object detection: A review

K Oksuz, BC Cam, S Kalkan… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
In this paper, we present a comprehensive review of the imbalance problems in object
detection. To analyze the problems in a systematic manner, we introduce a problem-based …

[HTML][HTML] A literature review of fault diagnosis based on ensemble learning

Z Mian, X Deng, X Dong, Y Tian, T Cao, K Chen… - … Applications of Artificial …, 2024 - Elsevier
The accuracy of fault diagnosis is an important indicator to ensure the reliability of key
equipment systems. Ensemble learning integrates different weak learning methods to obtain …

Daformer: Improving network architectures and training strategies for domain-adaptive semantic segmentation

L Hoyer, D Dai, L Van Gool - Proceedings of the IEEE/CVF …, 2022 - openaccess.thecvf.com
As acquiring pixel-wise annotations of real-world images for semantic segmentation is a
costly process, a model can instead be trained with more accessible synthetic data and …

Deep long-tailed learning: A survey

Y Zhang, B Kang, B Hooi, S Yan… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Deep long-tailed learning, one of the most challenging problems in visual recognition, aims
to train well-performing deep models from a large number of images that follow a long-tailed …

Balanced contrastive learning for long-tailed visual recognition

J Zhu, Z Wang, J Chen, YPP Chen… - Proceedings of the …, 2022 - openaccess.thecvf.com
Real-world data typically follow a long-tailed distribution, where a few majority categories
occupy most of the data while most minority categories contain a limited number of samples …

Parametric contrastive learning

J Cui, Z Zhong, S Liu, B Yu… - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
In this paper, we propose Parametric Contrastive Learning (PaCo) to tackle long-tailed
recognition. Based on theoretical analysis, we observe supervised contrastive loss tends to …

A strategic framework for artificial intelligence in marketing

MH Huang, RT Rust - Journal of the Academy of Marketing Science, 2021 - Springer
The authors develop a three-stage framework for strategic marketing planning, incorporating
multiple artificial intelligence (AI) benefits: mechanical AI for automating repetitive marketing …

End-to-end autonomous driving: Challenges and frontiers

L Chen, P Wu, K Chitta, B Jaeger, A Geiger… - arXiv preprint arXiv …, 2023 - arxiv.org
The autonomous driving community has witnessed a rapid growth in approaches that
embrace an end-to-end algorithm framework, utilizing raw sensor input to generate vehicle …

Long-tailed recognition via weight balancing

S Alshammari, YX Wang… - Proceedings of the …, 2022 - openaccess.thecvf.com
In the real open world, data tends to follow long-tailed class distributions, motivating the well-
studied long-tailed recognition (LTR) problem. Naive training produces models that are …

Learning memory-augmented unidirectional metrics for cross-modality person re-identification

J Liu, Y Sun, F Zhu, H Pei… - Proceedings of the …, 2022 - openaccess.thecvf.com
This paper tackles the cross-modality person re-identification (re-ID) problem by
suppressing the modality discrepancy. In cross-modality re-ID, the query and gallery images …