Full extremal process, cluster law and freezing for the two-dimensional discrete Gaussian free field

M Biskup, O Louidor - Advances in Mathematics, 2018 - Elsevier
We study the local structure of the extremal process associated with the Discrete Gaussian
Free Field (DGFF) in scaled-up (square-) lattice versions of bounded open planar domains …

Extrema of the two-dimensional discrete Gaussian free field

M Biskup - Random Graphs, Phase Transitions, and the Gaussian …, 2020 - Springer
These lecture notes offer a gentle introduction to the two-dimensional Discrete Gaussian
Free Field with particular attention paid to the scaling limits of the level sets at heights …

The extremal process of critical points of the pure p-spin spherical spin glass model

E Subag, O Zeitouni - Probability theory and related fields, 2017 - Springer
Recently, sharp results concerning the critical points of the Hamiltonian of the p-spin
spherical spin glass model have been obtained by means of moments computations. In …

Phase transition for the late points of random walk

A Prévost, PF Rodriguez, P Sousi - arXiv preprint arXiv:2309.03192, 2023 - arxiv.org
Let $ X $ be a random walk on the torus of side length $ N $ in dimension $ d\geq 3$ with
uniform starting point, and $ t_ {\text {cov}} $ be the expected value of its cover time, which is …

Thick points of random walk and the Gaussian free field

A Jego - 2020 - projecteuclid.org
We consider the thick points of random walk, ie points where the local time is a fraction of the
maximum. In two dimensions, we answer a question of [19] and compute the number of thick …

Extremes of some Gaussian random interfaces

A Chiarini, A Cipriani, RS Hazra - Journal of Statistical Physics, 2016 - Springer
In this article we give a general criterion for some dependent Gaussian models to belong to
maximal domain of attraction of Gumbel, following an application of the Stein–Chen method …

Quelques inégalités de superconcentration: théorie et applications

K Tanguy - 2017 - theses.hal.science
Cette thèse porte sur le phénomène de superconcentration qui apparaît dans l'étude des
fluctuations de divers modèles de la recherche actuelle (matrices aléatoires, verres de …

Extremes of log-correlated random fields and the Riemann zeta function, and some asymptotic results for various estimators in statistics

F Ouimet - 2019 - papyrus.bib.umontreal.ca
In this thesis, we study the extreme values of certain log-correlated random fields that are
Gaussian (the scale-inhomogeneous Gaussian free field and the time-inhomogeneous …

Pinning and disorder relevance for the lattice Gaussian free field

G Giacomin, H Lacoin - Journal of the European Mathematical Society, 2017 - ems.press
Pinning and disorder relevance for the lattice Gaussian free field Page 1 DOI 10.4171/JEMS/764
J. Eur. Math. Soc. 20, 199–257 c European Mathematical Society 2018 Giambattista Giacomin …

Disorder and wetting transition: the pinned harmonic crystal in dimension three or larger

G Giacomin, H Lacoin - The Annals of Applied Probability, 2018 - JSTOR
We consider the lattice Gaussian free field in d+ 1 dimensions, d= 3 or larger, on a large box
(linear size N) with boundary conditions zero. On this field, two potentials are acting: one …