Knowledge graphs: Opportunities and challenges

C Peng, F Xia, M Naseriparsa, F Osborne - Artificial Intelligence Review, 2023 - Springer
With the explosive growth of artificial intelligence (AI) and big data, it has become vitally
important to organize and represent the enormous volume of knowledge appropriately. As …

A survey of graph neural networks for recommender systems: Challenges, methods, and directions

C Gao, Y Zheng, N Li, Y Li, Y Qin, J Piao… - ACM Transactions on …, 2023 - dl.acm.org
Recommender system is one of the most important information services on today's Internet.
Recently, graph neural networks have become the new state-of-the-art approach to …

Recommendation as language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5)

S Geng, S Liu, Z Fu, Y Ge, Y Zhang - … of the 16th ACM Conference on …, 2022 - dl.acm.org
For a long time, different recommendation tasks require designing task-specific architectures
and training objectives. As a result, it is hard to transfer the knowledge and representations …

Knowledge graph contrastive learning for recommendation

Y Yang, C Huang, L Xia, C Li - … of the 45th international ACM SIGIR …, 2022 - dl.acm.org
Knowledge Graphs (KGs) have been utilized as useful side information to improve
recommendation quality. In those recommender systems, knowledge graph information …

Reinforcement learning based recommender systems: A survey

MM Afsar, T Crump, B Far - ACM Computing Surveys, 2022 - dl.acm.org
Recommender systems (RSs) have become an inseparable part of our everyday lives. They
help us find our favorite items to purchase, our friends on social networks, and our favorite …

Learning intents behind interactions with knowledge graph for recommendation

X Wang, T Huang, D Wang, Y Yuan, Z Liu… - Proceedings of the web …, 2021 - dl.acm.org
Knowledge graph (KG) plays an increasingly important role in recommender systems. A
recent technical trend is to develop end-to-end models founded on graph neural networks …

A survey on knowledge graphs: Representation, acquisition, and applications

S Ji, S Pan, E Cambria, P Marttinen… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Human knowledge provides a formal understanding of the world. Knowledge graphs that
represent structural relations between entities have become an increasingly popular …

A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation

L Wu, X He, X Wang, K Zhang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Influenced by the great success of deep learning in computer vision and language
understanding, research in recommendation has shifted to inventing new recommender …

A survey on knowledge graph-based recommender systems

Q Guo, F Zhuang, C Qin, H Zhu, X Xie… - … on Knowledge and …, 2020 - ieeexplore.ieee.org
To solve the information explosion problem and enhance user experience in various online
applications, recommender systems have been developed to model users' preferences …

[HTML][HTML] Deep reinforcement learning in recommender systems: A survey and new perspectives

X Chen, L Yao, J McAuley, G Zhou, X Wang - Knowledge-Based Systems, 2023 - Elsevier
In light of the emergence of deep reinforcement learning (DRL) in recommender systems
research and several fruitful results in recent years, this survey aims to provide a timely and …