Convolutional-neural network-based image crowd counting: Review, categorization, analysis, and performance evaluation

N Ilyas, A Shahzad, K Kim - Sensors, 2019 - mdpi.com
Traditional handcrafted crowd-counting techniques in an image are currently transformed
via machine-learning and artificial-intelligence techniques into intelligent crowd-counting …

Approaches on crowd counting and density estimation: a review

B Li, H Huang, A Zhang, P Liu, C Liu - Pattern Analysis and Applications, 2021 - Springer
In recent years, urgent needs for counting crowds and vehicles have greatly promoted
research of crowd counting and density estimation. Benefiting from the rapid development of …

Distribution matching for crowd counting

B Wang, H Liu, D Samaras… - Advances in neural …, 2020 - proceedings.neurips.cc
In crowd counting, each training image contains multiple people, where each person is
annotated by a dot. Existing crowd counting methods need to use a Gaussian to smooth …

A generalized loss function for crowd counting and localization

J Wan, Z Liu, AB Chan - … of the IEEE/CVF conference on …, 2021 - openaccess.thecvf.com
Previous work shows that a better density map representation can improve the performance
of crowd counting. In this paper, we investigate learning the density map representation …

Bayesian loss for crowd count estimation with point supervision

Z Ma, X Wei, X Hong, Y Gong - Proceedings of the IEEE …, 2019 - openaccess.thecvf.com
In crowd counting datasets, each person is annotated by a point, which is usually the center
of the head. And the task is to estimate the total count in a crowd scene. Most of the state-of …

Learning from synthetic data for crowd counting in the wild

Q Wang, J Gao, W Lin, Y Yuan - Proceedings of the IEEE …, 2019 - openaccess.thecvf.com
Recently, counting the number of people for crowd scenes is a hot topic because of its
widespread applications (eg video surveillance, public security). It is a difficult task in the …

Context-aware crowd counting

W Liu, M Salzmann, P Fua - … of the IEEE/CVF conference on …, 2019 - openaccess.thecvf.com
State-of-the-art methods for counting people in crowded scenes rely on deep networks to
estimate crowd density. They typically use the same filters over the whole image or over …

Attention scaling for crowd counting

X Jiang, L Zhang, M Xu, T Zhang, P Lv… - Proceedings of the …, 2020 - openaccess.thecvf.com
Abstract Convolutional Neural Network (CNN) based methods generally take crowd
counting as a regression task by outputting crowd densities. They learn the mapping …

Crowd counting in the frequency domain

W Shu, J Wan, KC Tan, S Kwong… - Proceedings of the …, 2022 - openaccess.thecvf.com
This paper investigates crowd counting in the frequency domain, which is a novel direction
compared to the traditional view in the spatial domain. By transforming the density map into …

Crowd counting with deep structured scale integration network

L Liu, Z Qiu, G Li, S Liu… - Proceedings of the …, 2019 - openaccess.thecvf.com
Automatic estimation of the number of people in unconstrained crowded scenes is a
challenging task and one major difficulty stems from the huge scale variation of people. In …