Y Hashimoto - The Journal of Geometric Analysis, 2021 - Springer
Suppose that a polarised Kähler manifold (X, L) admits an extremal metric ω ω. We prove that there exists a sequence of Kähler metrics {ω _k\} _k ω kk, converging to ω ω as k → ∞ …
L Ioos - Journal of Functional Analysis, 2022 - Elsevier
We show that a Kähler-Ricci soliton on a Fano manifold can always be smoothly approximated by a sequence of relative anticanonically balanced metrics, also called …
Y Hashimoto - Journal of the Mathematical Society of Japan, 2019 - jstage.jst.go.jp
We study algebro-geometric consequences of the quantised extremal Kähler metrics, introduced in the previous work of the author. We prove that the existence of quantised …
A Futaki, L Fuente-Gravy - arXiv preprint arXiv:1904.11749, 2019 - arxiv.org
In the first part of this paper we outline the constructions and properties of Fedosov star product and Berezin-Toeplitz star product. In the second part we outline the basic ideas and …
Y Hashimoto - The Bergman Kernel and Related Topics: Hayama …, 2024 - books.google.com
The first three sections of this paper are a survey of the author's work on balanced metrics and stability notions in algebraic geometry. The last section is devoted to proving the well …
C Tipler - Proceedings of the American Mathematical Society, 2023 - ams.org
For a polarized Kähler manifold $(X, L) $, we show the equivalence between relative balanced embeddings introduced by Mabuchi and $\sigma $-balanced embeddings …
C Tipler - arXiv preprint arXiv:1710.02536, 2017 - arxiv.org
For a polarized K\" ahler manifold $(X, L) $, we show the equivalence between relative balanced embeddings introduced by Mabuchi and $\sigma $-balanced embeddings …
Y Hashimoto - Hayama Symposium on Complex Analysis in Several …, 2022 - Springer
The first three sections of this paper are a survey of the author's work on balanced metrics and stability notions in algebraic geometry. The last section is devoted to proving the well …
Ce texte de synthèse présente des travaux en géométrie hermitienne, à l'interface de la géométrie algébrique complexe, de l'analyse géométrique et de la physique mathématique …