[HTML][HTML] Using artificial neural networks to ask 'why'questions of minds and brains

N Kanwisher, M Khosla, K Dobs - Trends in Neurosciences, 2023 - cell.com
Neuroscientists have long characterized the properties and functions of the nervous system,
and are increasingly succeeding in answering how brains perform the tasks they do. But the …

Backpropagation and the brain

TP Lillicrap, A Santoro, L Marris, CJ Akerman… - Nature Reviews …, 2020 - nature.com
During learning, the brain modifies synapses to improve behaviour. In the cortex, synapses
are embedded within multilayered networks, making it difficult to determine the effect of an …

Evidence of a predictive coding hierarchy in the human brain listening to speech

C Caucheteux, A Gramfort, JR King - Nature human behaviour, 2023 - nature.com
Considerable progress has recently been made in natural language processing: deep
learning algorithms are increasingly able to generate, summarize, translate and classify …

High-resolution image reconstruction with latent diffusion models from human brain activity

Y Takagi, S Nishimoto - … of the IEEE/CVF Conference on …, 2023 - openaccess.thecvf.com
Reconstructing visual experiences from human brain activity offers a unique way to
understand how the brain represents the world, and to interpret the connection between …

Training spiking neural networks using lessons from deep learning

JK Eshraghian, M Ward, EO Neftci… - Proceedings of the …, 2023 - ieeexplore.ieee.org
The brain is the perfect place to look for inspiration to develop more efficient neural
networks. The inner workings of our synapses and neurons provide a glimpse at what the …

Brains and algorithms partially converge in natural language processing

C Caucheteux, JR King - Communications biology, 2022 - nature.com
Deep learning algorithms trained to predict masked words from large amount of text have
recently been shown to generate activations similar to those of the human brain. However …

The neural architecture of language: Integrative modeling converges on predictive processing

M Schrimpf, IA Blank, G Tuckute… - Proceedings of the …, 2021 - National Acad Sciences
The neuroscience of perception has recently been revolutionized with an integrative
modeling approach in which computation, brain function, and behavior are linked across …

Convolutional neural networks as a model of the visual system: Past, present, and future

GW Lindsay - Journal of cognitive neuroscience, 2021 - direct.mit.edu
Convolutional neural networks (CNNs) were inspired by early findings in the study of
biological vision. They have since become successful tools in computer vision and state-of …

The neuroconnectionist research programme

A Doerig, RP Sommers, K Seeliger… - Nature Reviews …, 2023 - nature.com
Artificial neural networks (ANNs) inspired by biology are beginning to be widely used to
model behavioural and neural data, an approach we call 'neuroconnectionism'. ANNs have …

Deep problems with neural network models of human vision

JS Bowers, G Malhotra, M Dujmović… - Behavioral and Brain …, 2023 - cambridge.org
Deep neural networks (DNNs) have had extraordinary successes in classifying
photographic images of objects and are often described as the best models of biological …