The algebraic hull of the Kontsevich–Zorich cocycle

A Eskin, S Filip, A Wright - Annals of Mathematics, 2018 - projecteuclid.org
The algebraic hull of the Kontsevich–Zorich cocycle Page 1 Annals of Mathematics 188 (2018),
281–313 https://doi.org/10.4007/annals.2018.188.1.5 The algebraic hull of the Kontsevich–Zorich …

Semisimplicity and rigidity of the Kontsevich-Zorich cocycle

S Filip - Inventiones mathematicae, 2016 - Springer
We prove that invariant subbundles of the Kontsevich-Zorich cocycle respect the Hodge
structure. In particular, we establish a version of Deligne semisimplicity in this context. This …

Translation surfaces: Dynamics and Hodge theory

S Filip - EMS Surveys in Mathematical Sciences, 2024 - ems.press
A translation surface is a multifaceted object that can be studied with the tools of dynamics,
analysis, or algebraic geometry. Moduli spaces of translation surfaces exhibit equally rich …

Zero Lyapunov exponents and monodromy of the Kontsevich–Zorich cocycle

S Filip - 2017 - projecteuclid.org
We describe all the situations in which the Kontsevich–Zorich (KZ) cocycle has zero
Lyapunov exponents. Confirming a conjecture of Forni, Matheus, and Zorich, we find this …

Arithmeticity of the Kontsevich--Zorich monodromies of certain families of square-tiled surfaces

E Bonnafoux, M Kany, P Kattler, C Matheus… - arXiv preprint arXiv …, 2022 - arxiv.org
The variations of Hodge structures of weight one associated to square-tiled surfaces
naturally generate interesting subgroups of integral symplectic matrices called Kontsevich …

Cries and whispers in wind-tree forests

V Delecroix, A Zorich - arXiv preprint arXiv:1502.06405, 2015 - degruyter.com
The classical wind-tree model corresponds to a billiard in the plane endowed with Z2-
periodic obstacles of rectangular shape; the sides of the rectangles are aligned along the …

Kontsevich–Zorich monodromy groups of translation covers of some platonic solids

R Gutiérrez-Romo, D Lee, A Sanchez - Groups, Geometry, and …, 2024 - ems.press
We compute the Zariski closure of the Kontsevich–Zorich monodromy groups arising from
certain square-tiled surfaces that are geometrically motivated. Specifically we consider three …

A family of quaternionic monodromy groups of the Kontsevich--Zorich cocycle

R Gutiérrez-Romo - arXiv preprint arXiv:1811.02532, 2018 - arxiv.org
For all $ d $ belonging to a density-$1/8$ subset of the natural numbers, we give an
example of a square-tiled surface conjecturally realizing the group $\mathrm {SO}^*(2d) $ in …

[图书][B] Dynamical Aspects of Teichmüller Theory: SL (2, R)-Action on Moduli Spaces of Flat Surfaces

CMS Santos - 2018 - books.google.com
This book is a remarkable contribution to the literature on dynamical systems and geometry.
It consists of a selection of work in current research on Teichmüller dynamics, a field that has …

[PDF][PDF] Combinatorial theory of the Kontsevich–Zorich cocycle

G Rodolfo - 2019 - dim.uchile.cl
Ce travail s' inscrit dans le cadre de la dynamique de Teichmüller, un domaine riche dont les
techniques combinent des méthodes provenant de l'analyse complexe, la géométrie di …