[图书][B] Attractors for infinite-dimensional non-autonomous dynamical systems

A Carvalho, JA Langa, J Robinson - 2012 - books.google.com
The book treats the theory of attractors for non-autonomous dynamical systems. The aim of
the book is to give a coherent account of the current state of the theory, using the framework …

Global solutions and finite time blow up for damped semilinear wave equations

F Gazzola, M Squassina - Annales de l'Institut Henri Poincaré C, Analyse …, 2006 - Elsevier
A class of damped wave equations with superlinear source term is considered. It is shown
that every global solution is uniformly bounded in the natural phase space. Global existence …

On the strongly damped wave equation

V Pata, M Squassina - Communications in mathematical physics, 2005 - Springer
We prove the existence of the universal attractor for the strongly damped semilinear wave
equation, in the presence of a quite general nonlinearity of critical growth. When the …

Smooth attractors for strongly damped wave equations

V Pata, S Zelik - Nonlinearity, 2006 - iopscience.iop.org
Smooth attractors for strongly damped wave equations Page 1 Nonlinearity Smooth attractors for
strongly damped wave equations To cite this article: Vittorino Pata and Sergey Zelik 2006 …

Long-time dynamics for a fractional piezoelectric system with magnetic effects and Fourier's law

MM Freitas, AJA Ramos, AÖ Özer… - Journal of Differential …, 2021 - Elsevier
In this work, we use a variational approach to model vibrations on a piezoelectric beam with
fractional damping depending on a parameter ν∈(0, 1/2). Magnetic and thermal effects are …

Attractors for strongly damped wave equations with critical nonlinearities

AN Carvalho, JW Cholewa - Pacific Journal of Mathematics, 2002 - msp.org
In this paper we obtain global well-posedness results for the strongly damped wave
equation u tt+(− Δ) 𝜃 ut= Δ u+ f (u), for 𝜃∈[1, 1] 2, in H 0 1 (Ω)× L 2 (Ω) when Ω is a bounded …

[HTML][HTML] Sharp decay rates for wave equations with a fractional damping via new method in the Fourier space

RC Charao, CR da Luz, R Ikehata - Journal of Mathematical Analysis and …, 2013 - Elsevier
We study the Cauchy problem for damped wave equations with a fractional damping (− Δ) θ
ut in R n. We derive more sharp decay estimates of the total energy based on the energy …

A model of viscoelasticity with time-dependent memory kernels

M Conti, V Danese, C Giorgi, V Pata - American Journal of …, 2018 - muse.jhu.edu
We consider the model equation arising in the theory of viscoelasticity $$\partial_ {tt} u-h_t
(0)\Delta u-\int_ {0}^\infty h_t'(s)\Delta u (ts)\d s+ f (u)= g. $$ Here, the main feature is that the …

Energy decay estimates for wave equations with a fractional damping

R Ikehata, M Natsume - 2012 - projecteuclid.org
We consider the Cauchy problem in \bfR^n for wave equations with a fractional damping.
We generalize partially the previous results due to 12, and derive sharp decay estimates for …

Strongly damped wave problems: bootstrapping and regularity of solutions

AN Carvalho, JW Cholewa, T Dlotko - Journal of Differential Equations, 2008 - Elsevier
The aim of the article is to present a unified approach to the existence, uniqueness and
regularity of solutions to problems belonging to a class of second order in time semilinear …