Double machine learning and design in batch adaptive experiments

HH Li, AB Owen - Journal of Causal Inference, 2024 - degruyter.com
We consider an experiment with at least two stages or batches and O (N) subjects per batch.
First, we propose a semiparametric treatment effect estimator that efficiently pools …

CaRE: Finding Root Causes of Configuration Issues in Highly-Configurable Robots

MA Hossen, S Kharade, B Schmerl… - IEEE Robotics and …, 2023 - ieeexplore.ieee.org
Robotic systems have subsystems with a combinatorially large configuration space and
hundreds or thousands of possible software and hardware configuration options interacting …

Semi-parametric inference based on adaptively collected data

L Lin, K Khamaru, MJ Wainwright - arXiv preprint arXiv:2303.02534, 2023 - arxiv.org
Many standard estimators, when applied to adaptively collected data, fail to be
asymptotically normal, thereby complicating the construction of confidence intervals. We …

Best arm identification with contextual information under a small gap

M Kato, M Imaizumi, T Ishihara, T Kitagawa - arXiv preprint arXiv …, 2022 - arxiv.org
We study the best-arm identification (BAI) problem with a fixed budget and contextual
(covariate) information. In each round of an adaptive experiment, after observing contextual …

[PDF][PDF] Best Arm Identification with a Fixed Budget under a Small Gap

M Kato, K Ariu, M Imaizumi, M Uehara, M Nomura… - stat, 2022 - aeaweb.org
➢ Keywords: Causal inference, decision-making, and experimental design.∎ Treatment arm
(arm/treatment/policy). ex. drugs, advertisements, and economic policies.• Each treatment …

Debiased Regression for Root-N-Consistent Conditional Mean Estimation

M Kato - arXiv preprint arXiv:2411.11748, 2024 - arxiv.org
This study introduces a debiasing method for regression estimators, including high-
dimensional and nonparametric regression estimators. For example, nonparametric …

Asymptotically Optimal Fixed-Budget Best Arm Identification with Variance-Dependent Bounds

M Kato, M Imaizumi, T Ishihara, T Kitagawa - arXiv preprint arXiv …, 2023 - arxiv.org
We investigate the problem of fixed-budget best arm identification (BAI) for minimizing
expected simple regret. In an adaptive experiment, a decision maker draws one of multiple …

Optimal Best Arm Identification in Two-Armed Bandits with a Fixed Budget under a Small Gap

M Kato, K Ariu, M Imaizumi, M Nomura… - arXiv preprint arXiv …, 2022 - arxiv.org
We consider fixed-budget best-arm identification in two-armed Gaussian bandit problems.
One of the longstanding open questions is the existence of an optimal strategy under which …

Adaptive Experimental Design for Policy Learning: Contextual Best Arm Identification

M Kato, K Okumura, T Ishihara, T Kitagawa - ICML 2024 Workshop … - openreview.net
This study investigates the contextual best arm identification (BAI) problem, aiming to design
an adaptive experiment to identify the best treatment arm conditioned on contextual …