Transformers in medical imaging: A survey

F Shamshad, S Khan, SW Zamir, MH Khan… - Medical Image …, 2023 - Elsevier
Following unprecedented success on the natural language tasks, Transformers have been
successfully applied to several computer vision problems, achieving state-of-the-art results …

A comprehensive survey on test-time adaptation under distribution shifts

J Liang, R He, T Tan - International Journal of Computer Vision, 2024 - Springer
Abstract Machine learning methods strive to acquire a robust model during the training
process that can effectively generalize to test samples, even in the presence of distribution …

Visual classification via description from large language models

S Menon, C Vondrick - arXiv preprint arXiv:2210.07183, 2022 - arxiv.org
Vision-language models (VLMs) such as CLIP have shown promising performance on a
variety of recognition tasks using the standard zero-shot classification procedure--computing …

Last layer re-training is sufficient for robustness to spurious correlations

P Kirichenko, P Izmailov, AG Wilson - arXiv preprint arXiv:2204.02937, 2022 - arxiv.org
Neural network classifiers can largely rely on simple spurious features, such as
backgrounds, to make predictions. However, even in these cases, we show that they still …

Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging

S Azizi, L Culp, J Freyberg, B Mustafa, S Baur… - Nature Biomedical …, 2023 - nature.com
Abstract Machine-learning models for medical tasks can match or surpass the performance
of clinical experts. However, in settings differing from those of the training dataset, the …

Towards out-of-distribution generalization: A survey

J Liu, Z Shen, Y He, X Zhang, R Xu, H Yu… - arXiv preprint arXiv …, 2021 - arxiv.org
Traditional machine learning paradigms are based on the assumption that both training and
test data follow the same statistical pattern, which is mathematically referred to as …

Domain generalization: A survey

K Zhou, Z Liu, Y Qiao, T Xiang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet
challenging for machines to reproduce. This is because most learning algorithms strongly …

Generalizing to unseen domains: A survey on domain generalization

J Wang, C Lan, C Liu, Y Ouyang, T Qin… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Machine learning systems generally assume that the training and testing distributions are
the same. To this end, a key requirement is to develop models that can generalize to unseen …

Test-time classifier adjustment module for model-agnostic domain generalization

Y Iwasawa, Y Matsuo - Advances in Neural Information …, 2021 - proceedings.neurips.cc
This paper presents a new algorithm for domain generalization (DG),\textit {test-time
template adjuster (T3A)}, aiming to robustify a model to unknown distribution shift. Unlike …

Exact feature distribution matching for arbitrary style transfer and domain generalization

Y Zhang, M Li, R Li, K Jia… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Arbitrary style transfer (AST) and domain generalization (DG) are important yet challenging
visual learning tasks, which can be cast as a feature distribution matching problem. With the …