On -linear Hadamard codes: kernel and partial classification

C Fernández-Córdoba, C Vela… - Designs, Codes and …, 2019 - Springer
Abstract The Z _ 2^ s Z 2 s-additive codes are subgroups of Z^ n_ 2^ s Z 2 sn, and can be
seen as a generalization of linear codes over Z _2 Z 2 and Z _4 Z 4. AZ _ 2^ s Z 2 s-linear …

On -Linear Hadamard Codes: Rank and Classification

C Fernández-Córdoba, C Vela… - IEEE Transactions on …, 2019 - ieeexplore.ieee.org
The Z 2 (s)-additive codes are subgroups of Z n 2 (s), and can be seen as a generalization of
linear codes over Z 2 and Z 4. AZ 2 (s)-linear Hadamard code is a binary Hadamard code …

Linearity of Gray Codes via Schur Product

GT Bastos, MF Bollauf, AJ Ferrari - arXiv preprint arXiv:2309.12291, 2023 - arxiv.org
We propose an original approach to investigate the linearity of Gray codes obtained from
$\mathbb {Z} _ {2^ L} $-additive codes by introducing two related binary codes: the …

[图书][B] On Z₂s-linear Hadamard codes and their classification using the rank and kernel

C Vela Cabello - 2019 - ddd.uab.cat
The Z2s-additive codes are subgroups of Z n 2s, and can be seen as a generalization of
linear codes over Z2 and Z4. A Z2s-linear Hadamard code is a binary Hadamard code which …

On the Kernel of -Linear Hadamard Codes

C Fernández-Córdoba, C Vela… - arXiv preprint arXiv …, 2018 - arxiv.org
The $\mathbb {Z} _ {2^ s} $-additive codes are subgroups of $\mathbb {Z}^ n_ {2^ s} $, and
can be seen as a generalization of linear codes over $\mathbb {Z} _2 $ and $\mathbb {Z} _4 …