A comprehensive survey on trustworthy graph neural networks: Privacy, robustness, fairness, and explainability

E Dai, T Zhao, H Zhu, J Xu, Z Guo, H Liu, J Tang… - arXiv preprint arXiv …, 2022 - arxiv.org
Graph Neural Networks (GNNs) have made rapid developments in the recent years. Due to
their great ability in modeling graph-structured data, GNNs are vastly used in various …

A comprehensive survey on graph neural networks

Z Wu, S Pan, F Chen, G Long, C Zhang… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
Deep learning has revolutionized many machine learning tasks in recent years, ranging
from image classification and video processing to speech recognition and natural language …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

[HTML][HTML] On the analyses of medical images using traditional machine learning techniques and convolutional neural networks

S Iqbal, A N. Qureshi, J Li, T Mahmood - Archives of Computational …, 2023 - Springer
Convolutional neural network (CNN) has shown dissuasive accomplishment on different
areas especially Object Detection, Segmentation, Reconstruction (2D and 3D), Information …

Braingnn: Interpretable brain graph neural network for fmri analysis

X Li, Y Zhou, N Dvornek, M Zhang, S Gao… - Medical Image …, 2021 - Elsevier
Understanding which brain regions are related to a specific neurological disorder or
cognitive stimuli has been an important area of neuroimaging research. We propose …

Artificial intelligence of things for smarter healthcare: A survey of advancements, challenges, and opportunities

S Baker, W Xiang - IEEE Communications Surveys & Tutorials, 2023 - ieeexplore.ieee.org
Healthcare systems are under increasing strain due to a myriad of factors, from a steadily
ageing global population to the current COVID-19 pandemic. In a world where we have …

Deep learning for spatio-temporal data mining: A survey

S Wang, J Cao, SY Philip - IEEE transactions on knowledge …, 2020 - ieeexplore.ieee.org
With the fast development of various positioning techniques such as Global Position System
(GPS), mobile devices and remote sensing, spatio-temporal data has become increasingly …

[HTML][HTML] Accurate brain age prediction with lightweight deep neural networks

H Peng, W Gong, CF Beckmann, A Vedaldi… - Medical image …, 2021 - Elsevier
Deep learning has huge potential for accurate disease prediction with neuroimaging data,
but the prediction performance is often limited by training-dataset size and computing …

A survey on deep learning in medical image analysis

G Litjens, T Kooi, BE Bejnordi, AAA Setio, F Ciompi… - Medical image …, 2017 - Elsevier
Deep learning algorithms, in particular convolutional networks, have rapidly become a
methodology of choice for analyzing medical images. This paper reviews the major deep …

Braingb: a benchmark for brain network analysis with graph neural networks

H Cui, W Dai, Y Zhu, X Kan, AAC Gu… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Mapping the connectome of the human brain using structural or functional connectivity has
become one of the most pervasive paradigms for neuroimaging analysis. Recently, Graph …