Parameter estimation of heavy-tailed AR model with missing data via stochastic EM

J Liu, S Kumar, DP Palomar - IEEE Transactions on Signal …, 2019 - ieeexplore.ieee.org
The autoregressive (AR) model is a widely used model to understand time series data.
Traditionally, the innovation noise of the AR is modeled as Gaussian. However, many time …

Normal inverse Gaussian autoregressive model using EM algorithm

MS Dhull, A Kumar - International Journal of Advances in Engineering …, 2021 - Springer
In this article, normal inverse Gaussian (NIG) autoregressive model is introduced. The
parameters of the model are estimated using expectation maximization (EM) algorithm. The …

The expectation-maximization algorithm for autoregressive models with normal inverse Gaussian innovations

MS Dhull, A Kumar, A Wyłomańska - Communications in Statistics …, 2024 - Taylor & Francis
In this paper, we study the autoregressive (AR) model with normal inverse Gaussian (NIG)
innovations. The NIG distribution is semi heavy-tailed and is helpful in capturing the extreme …

Censored autoregressive regression models with Student‐t innovations

KAL Valeriano, FL Schumacher… - Canadian Journal of …, 2024 - Wiley Online Library
Data collected over time are common in applications and may contain censored or missing
observations, making it difficult to use standard statistical procedures. This article proposes …

Robust estimation using multivariate t innovations for vector autoregressive models via ECM algorithm

UC Nduka, TE Ugah, CH Izunobi - Journal of Applied Statistics, 2021 - Taylor & Francis
This paper considers the vector autoregressive model of order p, VAR (p), with multivariate t
error distributions, the latter being more prevalent in real life than the usual multivariate …

Análise bayesiana dos modelos de regressão linear com erros simétricos autorregressivos e dados incompletos

ST FREITAS - 2022 - bdtd.ibict.br
Os modelos de regressão com erros autorregressivos considerando dados incompletos, isto
é, quando a variável de interesse não está completamente disponível, seja pelo fato de ser …

Linear Time Series Models with Non-Gaussian Innovations

N Balakrishna - Non-Gaussian Autoregressive-Type Time Series, 2022 - Springer
The time series models with normally distributed innovations generate stationary normal
sequences. However, if the innovations are not normal then the stationary marginal …

تصادفي EM برآورد مدل اتورگرسيو چندکي خطي با استفاده از الگوريتم

محمد بهمني - Journal of Advanced Mathematical Modeling …, 2022 - search.ebscohost.com
ﻢﺘﻳﺭﻮﮕﻟﺍ ﺯﺍ ﻩﺩﺎﻔﺘﺳﺍ ﺎﺑ ﻝﺪﻣ ﻱﺎﻫﺮﺘﻣﺍﺭﺎﭘ ﺲﭙﺳ ﻭ ﺖﺳﺍ ﻩﺪﺷ ﻲﻓﺮﻌﻣ ﻲﮐﺪﻨﭼ ﻮﻴﺳﺮﮔﺭﻮﺗﺍ ﻲﻧﺎﻣﺯ ﻱﺮﺳ ﻝﺪﻣ، ﻪﻟﺎﻘﻣ ﻦﻳﺍ ﺭﺩ: ﻩﺪﻴﮑﭼ ﺭﺩ
ﻲﻳﺎﻤﻨﺘﺳﺭﺩ ﻊﺑﺎﺗ. ﺪﻧﻮﺷ ﻲﻣ ﺩﺭﻭﺁﺮﺑ، ﺖﺳﺍ ﻲﻳﺎﻤﻨﺘﺳﺭﺩ ﻢﻤﻴﺴﮐﺎﻣ ﻱﺎﻫﺩﺭﻭﺁﺮﺑ ﻪﺒﺳﺎﺤﻣ ﻱﺍﺮﺑ ﻱﺭﺍﺮﮑﺗ ﺵﻭﺭ ﮏﻳ ﻪﮐ SEM ﻩﺩﺎﻔﺘﺳﺍ ﺎﺑ ﻭ …

[PDF][PDF] Linear quantile autoregressive model estimation using Stochastic EM algorithm

M Bahmani - Journal of Advanced Mathematical Modeling, 2022 - jamm.scu.ac.ir
In this paper, the quantile autoregressive time series model is introduce and then the model
parameters are estimated using the Stochastic EM algorithm, which is an iterative method to …