A note on infinite series whose terms involve truncated degenerate exponentials

D San Kim, H Kim, T Kim - Applied Mathematics in Science and …, 2023 - Taylor & Francis
The degenerate exponentials are degenerate versions of the ordinary exponential and the
truncated degenerate exponentials are obtained from the Taylor expansions of them by …

Fractional moments

Ó Ciaurri - Integral Transforms and Special Functions, 2022 - Taylor & Francis
Full article: Fractional moments Skip to Main Content Taylor and Francis Online homepage
Taylor and Francis Online homepage Log in | Register Cart 1.Home 2.All Journals 3.Integral …

The evaluation of a class of fractional part integrals

O Furdui - Integral Transforms and Special Functions, 2015 - Taylor & Francis
The paper is about calculating in closed form the following multiple fractional part integral I
k=∫ 0 1⋯∫ 0 1 x 1 x 2⋯ xn− 1 xnkdx 1 dx 2⋯ dxn, where n≥ 3, k≥ 1 are integers and {x} …

Some results on generalized multiple fractional part integrals

A Li, Z Sun, H Qin - Integral Transforms and Special Functions, 2015 - Taylor & Francis
In this paper, the following multiple fractional part integrals I n, mp 1, p 2,…, pn=∫[0, 1] n∏
j= 1 nxjpj {S n− 1} mdx 1⋯ dxn and J n, mp=∫[0, 1] n S np {S n− 1} mdx 1⋯ dxn are …

Representation of a class of multiple fractional part integrals and their closed form

A Li, Z Sun, H Qin - Integral Transforms and Special Functions, 2016 - Taylor & Francis
In this paper, the following generalized multiple fractional part integrals: I n, μ α 1, α 2,…, α n
(a)=∫ 0 1∫ 0 1⋯∫ 0 1 x 1 α 1 x 2 α 2⋯ xn α n 1 ax 1 x 2⋯ xn μ× dx 1 dx 2⋯ dxn, and k 1, k …

[HTML][HTML] Further results on generalized multiple fractional part integrals for complex values

Z Sun, A Li, H Qin - Journal of Computational and Applied Mathematics, 2016 - Elsevier
In this paper, the following multiple fractional part integrals I n, β α 1, α 2,⋯, α n=∫[0, 1] n∏
j= 1 nxj α j {S n− 1} β dx 1⋯ dxn and J n, β α=∫[0, 1] n S n α {S n− 1} β dx 1⋯ dxn are studied …

[PDF][PDF] A Mystical Generalization of Fractional Part Integral.(Sharma's Conjecture)

S Sharma - 2020 - researchgate.net
A Mystical Generalization of Fractional Part Integral. (Sharma’s Conjecture) Page 1 A Mystical
Generalization of Fractional Part Integral. (Sharma’s Conjecture) Shivam Sharma …

[PDF][PDF] Multiple fractional part integrals and Eulers constant

O Furdui - Miskolc Mathematical Notes, 2016 - real.mtak.hu
MULTIPLE FRACTIONAL PART INTEGRALS AND EULER’S CONSTANT Page 1 Miskolc
Mathematical Notes HU e-ISSN 1787-2413 Vol. 17 (2016), No. 1, pp. 255–266 DOI …