Diffusion models: A comprehensive survey of methods and applications

L Yang, Z Zhang, Y Song, S Hong, R Xu, Y Zhao… - ACM Computing …, 2023 - dl.acm.org
Diffusion models have emerged as a powerful new family of deep generative models with
record-breaking performance in many applications, including image synthesis, video …

Challenges and applications of large language models

J Kaddour, J Harris, M Mozes, H Bradley… - arXiv preprint arXiv …, 2023 - arxiv.org
Large Language Models (LLMs) went from non-existent to ubiquitous in the machine
learning discourse within a few years. Due to the fast pace of the field, it is difficult to identify …

Inference-time intervention: Eliciting truthful answers from a language model

K Li, O Patel, F Viégas, H Pfister… - Advances in Neural …, 2024 - proceedings.neurips.cc
Abstract We introduce Inference-Time Intervention (ITI), a technique designed to enhance
the" truthfulness" of large language models (LLMs). ITI operates by shifting model activations …

Codet5+: Open code large language models for code understanding and generation

Y Wang, H Le, AD Gotmare, NDQ Bui, J Li… - arXiv preprint arXiv …, 2023 - arxiv.org
Large language models (LLMs) pretrained on vast source code have achieved prominent
progress in code intelligence. However, existing code LLMs have two main limitations in …

Taxonomy of risks posed by language models

L Weidinger, J Uesato, M Rauh, C Griffin… - Proceedings of the …, 2022 - dl.acm.org
Responsible innovation on large-scale Language Models (LMs) requires foresight into and
in-depth understanding of the risks these models may pose. This paper develops a …

Diffusion-lm improves controllable text generation

X Li, J Thickstun, I Gulrajani… - Advances in Neural …, 2022 - proceedings.neurips.cc
Controlling the behavior of language models (LMs) without re-training is a major open
problem in natural language generation. While recent works have demonstrated successes …

Coderl: Mastering code generation through pretrained models and deep reinforcement learning

H Le, Y Wang, AD Gotmare… - Advances in Neural …, 2022 - proceedings.neurips.cc
Program synthesis or code generation aims to generate a program that satisfies a problem
specification. Recent approaches using large-scale pretrained language models (LMs) have …

Training language models to follow instructions with human feedback

L Ouyang, J Wu, X Jiang, D Almeida… - Advances in neural …, 2022 - proceedings.neurips.cc
Making language models bigger does not inherently make them better at following a user's
intent. For example, large language models can generate outputs that are untruthful, toxic, or …

Multi-game decision transformers

KH Lee, O Nachum, MS Yang, L Lee… - Advances in …, 2022 - proceedings.neurips.cc
A longstanding goal of the field of AI is a method for learning a highly capable, generalist
agent from diverse experience. In the subfields of vision and language, this was largely …

Toxigen: A large-scale machine-generated dataset for adversarial and implicit hate speech detection

T Hartvigsen, S Gabriel, H Palangi, M Sap… - arXiv preprint arXiv …, 2022 - arxiv.org
Toxic language detection systems often falsely flag text that contains minority group
mentions as toxic, as those groups are often the targets of online hate. Such over-reliance …