[HTML][HTML] Epileptic seizures detection using deep learning techniques: a review

A Shoeibi, M Khodatars, N Ghassemi, M Jafari… - International journal of …, 2021 - mdpi.com
A variety of screening approaches have been proposed to diagnose epileptic seizures,
using electroencephalography (EEG) and magnetic resonance imaging (MRI) modalities …

Handling of uncertainty in medical data using machine learning and probability theory techniques: A review of 30 years (1991–2020)

R Alizadehsani, M Roshanzamir, S Hussain… - Annals of Operations …, 2021 - Springer
Understanding the data and reaching accurate conclusions are of paramount importance in
the present era of big data. Machine learning and probability theory methods have been …

Fusion of convolution neural network, support vector machine and Sobel filter for accurate detection of COVID-19 patients using X-ray images

D Sharifrazi, R Alizadehsani, M Roshanzamir… - … Signal Processing and …, 2021 - Elsevier
Abstract The coronavirus (COVID-19) is currently the most common contagious disease
which is prevalent all over the world. The main challenge of this disease is the primary …

Coronary artery disease detection using artificial intelligence techniques: A survey of trends, geographical differences and diagnostic features 1991–2020

R Alizadehsani, A Khosravi, M Roshanzamir… - Computers in Biology …, 2021 - Elsevier
While coronary angiography is the gold standard diagnostic tool for coronary artery disease
(CAD), but it is associated with procedural risk, it is an invasive technique requiring arterial …

Automated diagnosis of cardiovascular diseases from cardiac magnetic resonance imaging using deep learning models: A review

M Jafari, A Shoeibi, M Khodatars, N Ghassemi… - Computers in Biology …, 2023 - Elsevier
In recent years, cardiovascular diseases (CVDs) have become one of the leading causes of
mortality globally. At early stages, CVDs appear with minor symptoms and progressively get …

Uncertainty-aware semi-supervised method using large unlabeled and limited labeled COVID-19 data

R Alizadehsani, D Sharifrazi, NH Izadi… - ACM Transactions on …, 2021 - dl.acm.org
The new coronavirus has caused more than one million deaths and continues to spread
rapidly. This virus targets the lungs, causing respiratory distress which can be mild or …

Epileptic seizures detection in EEG signals using fusion handcrafted and deep learning features

A Malekzadeh, A Zare, M Yaghoobi, HR Kobravi… - Sensors, 2021 - mdpi.com
Epilepsy is a brain disorder disease that affects people's quality of life.
Electroencephalography (EEG) signals are used to diagnose epileptic seizures. This paper …

Automatic diagnosis of schizophrenia and attention deficit hyperactivity disorder in rs-fMRI modality using convolutional autoencoder model and interval type-2 fuzzy …

A Shoeibi, N Ghassemi, M Khodatars, P Moridian… - Cognitive …, 2023 - Springer
Nowadays, many people worldwide suffer from brain disorders, and their health is in danger.
So far, numerous methods have been proposed for the diagnosis of Schizophrenia (SZ) and …

RLMD‐PA: a reinforcement learning‐based myocarditis diagnosis combined with a population‐based algorithm for pretraining weights

SV Moravvej, R Alizadehsani, S Khanam… - Contrast Media & …, 2022 - Wiley Online Library
Myocarditis is heart muscle inflammation that is becoming more prevalent these days,
especially with the prevalence of COVID‐19. Noninvasive imaging cardiac magnetic …

Breast cancer dataset, classification and detection using deep learning

MS Iqbal, W Ahmad, R Alizadehsani, S Hussain… - Healthcare, 2022 - mdpi.com
Incorporating scientific research into clinical practice via clinical informatics, which includes
genomics, proteomics, bioinformatics, and biostatistics, improves patients' treatment …