S Popa - Inventiones mathematicae, 2006 - Springer
We consider crossed product II 1 factors M=NσG, with G discrete ICC groups that contain infinite normal subgroups with the relative property (T) and σ trace preserving actions of G …
We consider amalgamated free product II1 factors M= M 1* BM 2* B… and use “deformation/rigidity” and “intertwining” techniques to prove that any relatively rigid von …
S Popa - International Congress of Mathematicians, 2007 - math.ucla.edu
We present some recent rigidity results for von Neumann algebras (II1 factors) and equivalence relations arising from measure preserving actions of groups on probability …
S Popa - Journal of the American Mathematical Society, 2008 - ams.org
We prove that if a countable group $\Gamma $ contains infinite commuting subgroups $ H, H'\subset\Gamma $ with $ H $ non-amenable and $ H'$“weakly normal” in $\Gamma $, then …
S Popa, S Vaes - Journal für die reine und angewandte Mathematik …, 2014 - degruyter.com
We prove that for any free ergodic probability measure preserving action Γ→(X, μ) of a non- elementary hyperbolic group, or a lattice in a rank one simple Lie group, the associated …
S Popa - Inventiones mathematicae, 2006 - Springer
We prove that any isomorphism θ: M 0≃ M of group measure space II 1 factors, M_0=L^∞(X_0,\mu_0)\sigma_0G_0, M=L^∞(X,μ)σG, with G 0 an ICC group containing an …
We introduce the notion of L 2-rigidity for von Neumann algebras, a generalization of property (T) which can be viewed as an analogue for the vanishing of 1-cohomology into the …
I Chifan, T Sinclair - Annales scientifiques de l'École normale …, 2013 - numdam.org
R.–Ozawa a montré dans [21] que, pour un groupe cci hyperbolique, le facteur de type II1 associé est solide. En devéloppant une nouvelle approche, qui combine les méthodes de …
A Ioana, S Popa, S Vaes - Annals of mathematics, 2013 - JSTOR
We prove that for any group G in a fairly large class of generalized wreath product groups, the associated von Neumann algebra LG completely" remembers" the group G. More …