We prove a variational principle for stochastic flows on manifolds. It extends VI Arnoldʼs description of Lagrangian Euler flows, which are geodesics for the L 2 metric on the …
M Arnaudon, KA Coulibaly, A Thalmaier - Séminaire de Probabilités XLIII, 2011 - Springer
We define horizontal diffusion in C 1 path space over a Riemannian manifold and prove its existence. If the metric on the manifold is developing under the forward Ricci flow, horizontal …
We provide a theory of manifold‐valued rough paths of bounded 3> p 3>p‐variation, which we do not assume to be geometric. Rough paths are defined in charts, relying on the vector …
KA Coulibaly-Pasquier - Annales de l'IHP Probabilités et statistiques, 2011 - numdam.org
We generalize Brownian motion on a Riemannian manifold to the case of a family of metrics which depends on time. Such questions are natural for equations like the heat equation with …
Résumé On écrit une formule de Bismut intrinsèque pour la hessienne d'un semigroupe de la chaleur ou d'une fonction harmonique sur une variété, en calculant des dérivées …
We construct a family of SDEs with smooth coefficients whose solutions select a reflected Brownian flow as well as a corresponding stochastic damped transport process (W_t), the …
M Arnaudon, RO Bauer, A Thalmaier - Journal de mathématiques pures et …, 2002 - Elsevier
We construct a parallel transport U in a vector bundle E, along the paths of a Brownian motion in the underlying manifold, with respect to a time dependent covariant derivative∇ …
Basic derivative formulas are presented for hypoelliptic heat semigroups and harmonic functions extending earlier work in the elliptic case. According to our approach, special …
M Arnaudon, A Thalmaier - Journal de mathématiques pures et appliquées, 1998 - Elsevier
Differentiable families of∇-martingales on manifolds are investigated: their infinitesimal variation provides a notion of stochastic Jacobi fields. Such objects are known [2] to be …