The topological structure of fractal tilings generated by quadratic number systems

S Akiyama, JM Thuswaldner - Computers & mathematics with applications, 2005 - Elsevier
Let α be a root of an irreducible quadratic polynomial x2+ Ax+ B with integer coefficients A, B
and assume that α forms a canonical number system, ie, each x∈ ℤ [α] admits a …

Canonical number systems, counting automata and fractals

K Scheicher, JM Thuswaldner - Mathematical Proceedings of the …, 2002 - cambridge.org
In this paper we study properties of the fundamental domain [Fscr] β of number systems,
which are defined in rings of integers of number fields. First we construct addition automata …

Topological properties of two-dimensional number systems

S Akiyama, JM Thuswaldner - Journal de théorie des nombres de …, 2000 - numdam.org
Pour une matrice réelle M d'ordre 2 donnée, on peut définir la notion de représentation M-
adique d'un élément de ℝ 2. On note ℱ le domaine fondamental constitué des nombres de …

[图书][B] Neighbours of self-affine tiles in lattice tilings

K Scheicher, JM Thuswaldner - 2003 - Springer
Let T be a tile of a self-affine lattice tiling. We give an algorithm that allows to determine all
neighbours of T in the tiling. This can be used to characterize the sets VL of points, where T …

Boundary parametrization of self-affine tiles

S Akiyama, B Loridant - Journal of the Mathematical Society of Japan, 2011 - jstage.jst.go.jp
A standard way to parametrize the boundary of a connected fractal tile T is proposed. The
parametrization is Hölder continuous from R/Z to∂ T and fixed points of∂ T have algebraic …

Natural tiling, lattice tiling and Lebesgue measure of integral self-affine tiles

JP Gabardo, X Yu - Journal of the London Mathematical Society, 2006 - cambridge.org
NATURAL TILING, LATTICE TILING AND LEBESGUE MEASURE OF INTEGRAL SELF-AFFINE
TILES Page 1 J. London Math. Soc. (2) 74 (2006) 184–204 Cо2006 London Mathematical …

On the boundary connectedness of connected tiles

J Luo, S Akiyama, JM Thuswaldner - Mathematical Proceedings of …, 2004 - cambridge.org
On the boundary connectedness of connected tiles Page 1 Math. Proc. Camb. Phil. Soc. (2004),
137, 397 c© 2004 Cambridge Philosophical Society DOI: 10.1017/S0305004104007625 …

Height reducing property of polynomials and self-affine tiles

XG He, I Kirat, KS Lau - Geometriae Dedicata, 2011 - Springer
A monic polynomial f (x) ∈\mathbb Z x is said to have the height reducing property (HRP) if
there exists a polynomial h (x) ∈\mathbb Z x such that f (x) h (x)= a_n x^ n+ a_ n-1 x^ n-1+ …

[PDF][PDF] Intersecting two-dimensional fractals with lines

S Akiyama, K Scheicher - Acta Sci. Math.(Szeged), 2005 - researchgate.net
The Twin Dragon and Rauzy fractals are intersected with the real axis. In the Twin Dragon
case, unexpectedly from its fractal nature, the intersection is an interval characterized by a …

Asymptotic normality of b-additive functions on polynomial sequences in the Gaussian number field

B Gittenberger, JM Thuswaldner - Journal of Number Theory, 2000 - Elsevier
We consider the asymptotic behavior of b-additive functions f with respect to a base b of a
canonical number system in the Gaussian number field. In particular, we get a normal limit …