Fractional Orlicz-Sobolev embeddings

A Alberico, A Cianchi, L Pick, L Slavíková - Journal de Mathématiques …, 2021 - Elsevier
The optimal Orlicz target space is exhibited for embeddings of fractional-order Orlicz–
Sobolev spaces in R n. An improved embedding with an Orlicz–Lorentz target space, which …

The Bourgain–Brezis–Mironescu formula on ball Banach function spaces

F Dai, L Grafakos, Z Pan, D Yang, W Yuan… - Mathematische …, 2024 - Springer
Abstract Let p∈[1,∞) and X be a ball Banach function space on R n with an absolutely
continuous norm for which the Hardy–Littlewood maximal operator is bounded on (X 1/p) …

Generalized Brezis–Seeger–Van Schaftingen–Yung formulae and their applications in ball Banach Sobolev spaces

C Zhu, D Yang, W Yuan - Calculus of Variations and Partial Differential …, 2023 - Springer
Let X be a ball Banach function space on R n. In this article, under some mild extra
assumptions about both X and the boundedness of the Hardy–Littlewood maximal operator …

Brezis--Seeger--Van Schaftingen--Yung-Type Characterization of Homogeneous Ball Banach Sobolev Spaces and Its Applications

C Zhu, D Yang, W Yuan - arXiv preprint arXiv:2307.10528, 2023 - arxiv.org
Let $\gamma\in\mathbb {R}\setminus\{0\} $ and $ X (\mathbb {R}^ n) $ be a ball Banach
function space satisfying some mild assumptions. Assume that $\Omega=\mathbb {R}^ n …

[HTML][HTML] Affine Orlicz Pólya–Szegö principle for log-concave functions

Y Lin - Journal of Functional Analysis, 2017 - Elsevier
The affine L p Pólya–Szegö principle significantly strengthens the classical Pólya–Szegö
principle. It is an open problem whether there exists an affine Orlicz Pólya–Szegö principle …

On the asymptotic behaviour of the fractional Sobolev seminorms in metric measure spaces: Bourgain-Brezis-Mironescu's theorem revisited

BX Han, A Pinamonti - arXiv preprint arXiv:2110.05980, 2021 - arxiv.org
We generalize Bourgain-Brezis-Mironescu's asymptotic formula for fractional Sobolev
functions, in the setting of abstract metric measure spaces, under the assumption that at …

Magnetic BV-functions and the Bourgain–Brezis–Mironescu formula

A Pinamonti, M Squassina, E Vecchi - Advances in Calculus of …, 2019 - degruyter.com
Magnetic BV-functions and the Bourgain–Brezis–Mironescu formula Skip to content Should
you have institutional access? Here's how to get it ... De Gruyter € EUR - Euro £ GBP - Pound …

Bourgain-Brezis-Mironescu formula for -spaces in arbitrary domains

K Mohanta - Calculus of Variations and Partial Differential …, 2024 - Springer
Under certain restrictions on s, p, q, the Triebel-Lizorkin spaces can be viewed as
generalised fractional Sobolev spaces W qs, p. In this article, we show that the Bourgain …

On fractional Orlicz–Sobolev spaces

A Alberico, A Cianchi, L Pick, L Slavíková - Analysis and Mathematical …, 2021 - Springer
Some recent results on the theory of fractional Orlicz–Sobolev spaces are surveyed. They
concern Sobolev type embeddings for these spaces with an optimal Orlicz target, related …

Extension Theorem and Bourgain--Brezis--Mironescu-Type Characterization of Ball Banach Sobolev Spaces on Domains

C Zhu, D Yang, W Yuan - arXiv preprint arXiv:2307.11392, 2023 - arxiv.org
Let $\Omega\subset\mathbb {R}^ n $ be a bounded $(\varepsilon,\infty) $-domain with
$\varepsilon\in (0, 1] $, $ X (\mathbb {R}^ n) $ a ball Banach function space satisfying some …