Symmetric power functoriality for holomorphic modular forms

J Newton, JA Thorne - Publications mathématiques de l'IHÉS, 2021 - Springer
Let ff be a cuspidal Hecke eigenform of level 1. We prove the automorphy of the symmetric
power lifting Sym nf Sym^nf for every n≥ 1 n≧1. We establish the same result for a more …

A family of Calabi–Yau varieties and potential automorphy II

T Barnet-Lamb, D Geraghty, M Harris… - Publications of the …, 2011 - ems.press
We prove new potential modularity theorems for n-dimensional essentially self-dual l-adic
representations of the absolute Galois group of a totally real eld. Most notably, in the …

Symmetric power functoriality for holomorphic modular forms, II

J Newton, JA Thorne - 2021 - repository.cam.ac.uk
Abstract jats: titleAbstract</jats: title> jats: pLet jats: inline-formulajats: alternativesjats: tex-
math f</jats: tex-math>< mml: math xmlns: mml=" http://www. w3. org/1998/Math/MathML"> …

Potential automorphy and change of weight

T Barnet-Lamb, T Gee, D Geraghty, R Taylor - Annals of Mathematics, 2014 - JSTOR
We prove an automorphy lifting theorem for l-adic representations where we impose a new
condition at l, which we call" potentential diagonalizability." This result allows for" change of …

Patching and the p-adic local Langlands correspondence

A Caraiani, M Emerton, T Gee, D Geraghty… - arXiv preprint arXiv …, 2013 - arxiv.org
Patching and the p-adic local Langlands correspondenceT1 Page 1 arXiv:1310.0831v5 [math.NT]
1 Jul 2016 Cambridge Journal of Mathematics Volume 0, Number 0, 1, 2014 Patching and the …

On the automorphy of l-adic Galois representations with small residual image With an appendix by Robert Guralnick, Florian Herzig, Richard Taylor and Jack Thorne

J Thorne - Journal of the Institute of Mathematics of Jussieu, 2012 - cambridge.org
We prove new automorphy lifting theorems for essentially conjugate self-dual Galois
representations into GLn. Existing theorems require that the residual representation have …

The Breuil–Mézard conjecture for potentially Barsotti–Tate representations

T Gee, M Kisin - Forum of Mathematics, Pi, 2014 - cambridge.org
We prove the Breuil–Mézard conjecture for two-dimensional potentially Barsotti–Tate
representations of the absolute Galois group (up to the question of determining precise …

Sato–Tate distributions and Galois endomorphism modules in genus 2

F Fité, KS Kedlaya, V Rotger… - Compositio Mathematica, 2012 - cambridge.org
For an abelian surface A over a number field k, we study the limiting distribution of the
normalized Euler factors of the L-function of A. This distribution is expected to correspond to …

A geometric perspective on the Breuil–Mézard conjecture

M Emerton, T Gee - Journal of the Institute of Mathematics of Jussieu, 2014 - cambridge.org
A GEOMETRIC PERSPECTIVE ON THE BREUIL–MÉZARD CONJECTURE Page 1 J. Inst. Math.
Jussieu (2014) 13(1), 183–223 183 doi:10.1017/S147474801300011X c Cambridge University …

Sato–Tate theorem for families and low-lying zeros of automorphic -functions: With appendices by Robert Kottwitz [A] and by Raf Cluckers, Julia Gordon, and …

SW Shin, N Templier - Inventiones mathematicae, 2016 - Springer
We consider certain families of automorphic representations over number fields arising from
the principle of functoriality of Langlands. Let GG be a reductive group over a number field …