Geometry of horospherical varieties of Picard rank one

R Gonzales, C Pech, N Perrin… - International …, 2022 - academic.oup.com
We study the geometry of smooth non-homogeneous horospherical varieties of Picard rank
one. These have been classified by Pasquier and include the well-known odd symplectic …

Characteristic conic connections and torsion-free principal connections

JM Hwang, Q Li - Journal de Mathématiques Pures et Appliquées, 2024 - Elsevier
We study the relation between torsion tensors of principal connections on G-structures and
characteristic conic connections on associated cone structures. We formulate sufficient …

The double Cayley Grassmannian

L Manivel - arXiv preprint arXiv:2004.00313, 2020 - arxiv.org
We study the smooth projective symmetric variety of Picard number one that compactifies the
exceptional complex Lie group G2, by describing it in terms of vector bundles on the spinor …

Almost homogeneous curves over an arbitrary field

B Laurent - Transformation Groups, 2019 - Springer
We classify the pairs (C, G) where C is a seminormal curve over an arbitrary field k and G is
a smooth connected algebraic group acting faithfully on C with a dense orbit, and we …

Minimal rational curves on generalized Bott–Samelson varieties

M Brion, SS Kannan - Compositio Mathematica, 2021 - cambridge.org
We investigate families of minimal rational curves on Schubert varieties, their Bott–
Samelson desingularizations, and their generalizations constructed by Nicolas Perrin in the …

Generalized Tanaka prolongation and convergence of formal equivalence between embeddings

J Hong, JM Hwang - arXiv preprint arXiv:2408.15537, 2024 - arxiv.org
The works of Commichau--Grauert and Hirschowitz showed that a formal equivalence
between embeddings of a compact complex manifold is convergent, if the embeddings have …

Deformation rigidity of the double Cayley Grassmannian

S Kim, KD Park - Differential Geometry and its Applications, 2025 - Elsevier
Abstract The double Cayley Grassmannian is a unique smooth equivariant completion with
Picard number one of the 14-dimensional exceptional complex Lie group G 2, and it …

Rigidity of wonderful group compactifications under Fano deformations

B Fu, Q Li - Journal of Differential Geometry, 2024 - projecteuclid.org
$\def\G {\overline {G}} $ For a complex connected semisimple linear algebraic group $ G $ of
adjoint type and of rank $ n $, De Concini and Procesi constructed its wonderful …

[PDF][PDF] DIAGRAMS FOR VARIETIES OF MINIMAL RATIONAL TANGENTS ON THE WONDERFUL SYMMETRIC VARIETIES

SY KIM - arXiv preprint arXiv:2306.10242, 2023 - researchgate.net
We describe varieties of minimal rational tangents on the wonderful symmetric varieties by
marked Dynkin diagrams. An irreducible component of a variety of minimal rational tangents …

Simplicity of tangent bundles of smooth horospherical varieties of Picard number one

J Hong - Comptes Rendus. Mathématique, 2022 - numdam.org
Récemment, Kanemitsu a découvert un contre-exemple à la conjecture de longue date
selon laquelle le faisceau tangent d'une variété de Fano de nombre de Picard un est (semi) …