Computational optimal transport: With applications to data science

G Peyré, M Cuturi - Foundations and Trends® in Machine …, 2019 - nowpublishers.com
Optimal transport (OT) theory can be informally described using the words of the French
mathematician Gaspard Monge (1746–1818): A worker with a shovel in hand has to move a …

A survey on semi-supervised learning

JE Van Engelen, HH Hoos - Machine learning, 2020 - Springer
Semi-supervised learning is the branch of machine learning concerned with using labelled
as well as unlabelled data to perform certain learning tasks. Conceptually situated between …

Optimal mass transport: Signal processing and machine-learning applications

S Kolouri, SR Park, M Thorpe… - IEEE signal …, 2017 - ieeexplore.ieee.org
Transport-based techniques for signal and data analysis have recently received increased
interest. Given their ability to provide accurate generative models for signal intensities and …

Generalized sliced wasserstein distances

S Kolouri, K Nadjahi, U Simsekli… - Advances in neural …, 2019 - proceedings.neurips.cc
The Wasserstein distance and its variations, eg, the sliced-Wasserstein (SW) distance, have
recently drawn attention from the machine learning community. The SW distance …

Optimal transport for domain adaptation

N Courty, R Flamary, D Tuia… - IEEE transactions on …, 2016 - ieeexplore.ieee.org
Domain adaptation is one of the most challenging tasks of modern data analytics. If the
adaptation is done correctly, models built on a specific data representation become more …

Iterative Bregman projections for regularized transportation problems

JD Benamou, G Carlier, M Cuturi, L Nenna… - SIAM Journal on Scientific …, 2015 - SIAM
This paper details a general numerical framework to approximate solutions to linear
programs related to optimal transport. The general idea is to introduce an entropic …

Convolutional wasserstein distances: Efficient optimal transportation on geometric domains

J Solomon, F De Goes, G Peyré, M Cuturi… - ACM Transactions on …, 2015 - dl.acm.org
This paper introduces a new class of algorithms for optimization problems involving optimal
transportation over geometric domains. Our main contribution is to show that optimal …

Computational optimal transport: Complexity by accelerated gradient descent is better than by Sinkhorn's algorithm

P Dvurechensky, A Gasnikov… - … conference on machine …, 2018 - proceedings.mlr.press
We analyze two algorithms for approximating the general optimal transport (OT) distance
between two discrete distributions of size $ n $, up to accuracy $\varepsilon $. For the first …

Quantifying distributional model risk via optimal transport

J Blanchet, K Murthy - Mathematics of Operations Research, 2019 - pubsonline.informs.org
This paper deals with the problem of quantifying the impact of model misspecification when
computing general expected values of interest. The methodology that we propose is …

Learning with a Wasserstein loss

C Frogner, C Zhang, H Mobahi… - Advances in neural …, 2015 - proceedings.neurips.cc
Learning to predict multi-label outputs is challenging, but in many problems there is a
natural metric on the outputs that can be used to improve predictions. In this paper we …