Clinical artificial intelligence quality improvement: towards continual monitoring and updating of AI algorithms in healthcare

J Feng, RV Phillips, I Malenica, A Bishara… - NPJ digital …, 2022 - nature.com
Abstract Machine learning (ML) and artificial intelligence (AI) algorithms have the potential to
derive insights from clinical data and improve patient outcomes. However, these highly …

Deep learning in electron microscopy

JM Ede - Machine Learning: Science and Technology, 2021 - iopscience.iop.org
Deep learning is transforming most areas of science and technology, including electron
microscopy. This review paper offers a practical perspective aimed at developers with …

Towards accountability for machine learning datasets: Practices from software engineering and infrastructure

B Hutchinson, A Smart, A Hanna, E Denton… - Proceedings of the …, 2021 - dl.acm.org
Datasets that power machine learning are often used, shared, and reused with little visibility
into the processes of deliberation that led to their creation. As artificial intelligence systems …

Closing the AI accountability gap: Defining an end-to-end framework for internal algorithmic auditing

ID Raji, A Smart, RN White, M Mitchell… - Proceedings of the …, 2020 - dl.acm.org
Rising concern for the societal implications of artificial intelligence systems has inspired a
wave of academic and journalistic literature in which deployed systems are audited for harm …

Machine learning testing: Survey, landscapes and horizons

JM Zhang, M Harman, L Ma… - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
This paper provides a comprehensive survey of techniques for testing machine learning
systems; Machine Learning Testing (ML testing) research. It covers 144 papers on testing …

Software engineering for AI-based systems: a survey

S Martínez-Fernández, J Bogner, X Franch… - ACM Transactions on …, 2022 - dl.acm.org
AI-based systems are software systems with functionalities enabled by at least one AI
component (eg, for image-, speech-recognition, and autonomous driving). AI-based systems …

Collaboration challenges in building ml-enabled systems: Communication, documentation, engineering, and process

N Nahar, S Zhou, G Lewis, C Kästner - Proceedings of the 44th …, 2022 - dl.acm.org
The introduction of machine learning (ML) components in software projects has created the
need for software engineers to collaborate with data scientists and other specialists. While …

Data validation for machine learning

N Polyzotis, M Zinkevich, S Roy… - … of machine learning …, 2019 - proceedings.mlsys.org
Abstract Machine learning is a powerful tool for gleaning knowledge from massive amounts
of data. While a great deal of machine learning research has focused on improving the …

Coordinating Human and Machine Learning for Effective Organizational Learning.

T Sturm, JP Gerlach, L Pumplun, N Mesbah… - MIS …, 2021 - search.ebscohost.com
With the rise of machine learning (ML), humans are no longer the only ones capable of
learning and contributing to an organization's stock of knowledge. We study how …

Towards CRISP-ML (Q): a machine learning process model with quality assurance methodology

S Studer, TB Bui, C Drescher, A Hanuschkin… - Machine learning and …, 2021 - mdpi.com
Machine learning is an established and frequently used technique in industry and
academia, but a standard process model to improve success and efficiency of machine …