[HTML][HTML] SurvSHAP (t): time-dependent explanations of machine learning survival models

M Krzyziński, M Spytek, H Baniecki, P Biecek - Knowledge-Based Systems, 2023 - Elsevier
Abstract Machine and deep learning survival models demonstrate similar or even improved
time-to-event prediction capabilities compared to classical statistical learning methods yet …

Structuring the scattered literature on algorithmic profiling in the case of unemployment through a systematic literature review

KB Haug - International Journal of Sociology and Social Policy, 2022 - emerald.com
Structuring the scattered literature on algorithmic profiling in the case of unemployment
through a systematic literature review | Emerald Insight Books and journals Case studies …

[HTML][HTML] Survival analysis as semi-supervised multi-target regression for time-to-employment prediction using oblique predictive clustering trees

V Andonovikj, P Boškoski, S Džeroski… - Expert Systems with …, 2024 - Elsevier
We address the problem of estimating the time-to-employment of a jobseeker using survival
analysis and oblique predictive clustering tree. Unlike standard survival analysis, oblique …

Predictive algorithms in the delivery of public employment services

J Körtner, G Bonoli - Handbook of Labour Market Policy in …, 2023 - elgaronline.com
At the centre of labour market policy activities in most modern welfare states are public
employment services (PES) and their caseworkers, who enforce labour market policies on …

DAmcqrnn: An approach to censored monotone composite quantile regression neural network estimation

R Hao, Q Han, L Li, X Yang - Information Sciences, 2023 - Elsevier
Quantile regression neural network (QRNN) model has recently become popular in solving
complex nonlinear problems, but the quantile curves achieved by QRNN model may cross …

Факторы, влияющие на вероятность трудоустройства официально зарегистрированных безработных

МА Гильтман, АЮ Мерзлякова… - Вопросы экономики, 2024 - vopreco.ru
Аннотация Исследуются факторы, влияющие на продолжительность регистрируемой
безработицы и вероятность трудоустройства после выхода из нее. Такой анализ …

Community analysis in Slovenian labour network 2010-2020

V Andonovikj, P Boskoski, B Evkoski… - Journal of Decision …, 2022 - Taylor & Francis
There is little evidence on the right approach on how to delineate the sub-networks in a
labour market. The subject of research in this paper is computational influence identification …

[HTML][HTML] Анализ выхода из зарегистрированной безработицы: оценка влияния индивидуальных характеристик

МА Гильтман, АЮ Мерзлякова… - Вопросы …, 2022 - cyberleninka.ru
С началом в 2019 г. реформы государственных региональных служб занятости
населения и с изменением института выплаты пособия зарегистрированным …

Interpretable and Accurate Identification of Job Seekers at Risk of Long-Term Unemployment: Explainable ML-Based Profiling

W Dossche, S Vansteenkiste, B Baesens… - SN Computer …, 2024 - Springer
To tackle the societal and person-specific adverse consequences of long-term
unemployment, many public employment services (PES) have implemented data-driven …

[PDF][PDF] Machine learning algorithms for predicting unemployment duration in Russia

AA Maigur - Russian Journal of Economics, 2024 - rujec.org
Predictions of the individual unemployment duration will allow to distribute target support
while searching for a job more effectively. The paper uses survival models to predict the …