A unifying review of deep and shallow anomaly detection

L Ruff, JR Kauffmann, RA Vandermeulen… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Deep learning approaches to anomaly detection (AD) have recently improved the state of
the art in detection performance on complex data sets, such as large collections of images or …

Deep learning for sensor-based human activity recognition: Overview, challenges, and opportunities

K Chen, D Zhang, L Yao, B Guo, Z Yu… - ACM Computing Surveys …, 2021 - dl.acm.org
The vast proliferation of sensor devices and Internet of Things enables the applications of
sensor-based activity recognition. However, there exist substantial challenges that could …

[PDF][PDF] IS AI GROUND TRUTH REALLY TRUE? THE DANGERS OF TRAINING AND EVALUATING AI TOOLS BASED ON EXPERTS'KNOW-WHAT.

S Lebovitz, N Levina, H Lifshitz-Assaf - MIS quarterly, 2021 - researchgate.net
Organizational decision-makers need to evaluate AI tools in light of increasing claims that
such tools outperform human experts. Yet, measuring the quality of knowledge work is …

[PDF][PDF] 神经网络七十年: 回顾与展望

焦李成, 杨淑媛, 刘芳, 王士刚, 冯志玺 - 计算机学报, 2016 - cjc.ict.ac.cn
Hodykin-Huxley 方程, 感知器模型与自适应滤波器, 再到六十年代的自组织映射网络,
神经认知机, 自适应共振网络, 许多神经计算模型都发展成为信号处理, 计算机视觉 …

[HTML][HTML] An introductory review of deep learning for prediction models with big data

F Emmert-Streib, Z Yang, H Feng, S Tripathi… - Frontiers in Artificial …, 2020 - frontiersin.org
Deep learning models stand for a new learning paradigm in artificial intelligence (AI) and
machine learning. Recent breakthrough results in image analysis and speech recognition …

[HTML][HTML] Text classification algorithms: A survey

K Kowsari, K Jafari Meimandi, M Heidarysafa, S Mendu… - Information, 2019 - mdpi.com
In recent years, there has been an exponential growth in the number of complex documents
and texts that require a deeper understanding of machine learning methods to be able to …

Deep feature based rice leaf disease identification using support vector machine

PK Sethy, NK Barpanda, AK Rath, SK Behera - Computers and Electronics …, 2020 - Elsevier
Features are the vital factor for image classification in the field of machine learning. The
advancement of deep convolutional neural network (CNN) shows the way for identification …

[HTML][HTML] A state-of-the-art survey on deep learning theory and architectures

MZ Alom, TM Taha, C Yakopcic, S Westberg, P Sidike… - electronics, 2019 - mdpi.com
In recent years, deep learning has garnered tremendous success in a variety of application
domains. This new field of machine learning has been growing rapidly and has been …

A survey of the recent architectures of deep convolutional neural networks

A Khan, A Sohail, U Zahoora, AS Qureshi - Artificial intelligence review, 2020 - Springer
Abstract Deep Convolutional Neural Network (CNN) is a special type of Neural Networks,
which has shown exemplary performance on several competitions related to Computer …

Speech recognition using deep neural networks: A systematic review

AB Nassif, I Shahin, I Attili, M Azzeh, K Shaalan - IEEE access, 2019 - ieeexplore.ieee.org
Over the past decades, a tremendous amount of research has been done on the use of
machine learning for speech processing applications, especially speech recognition …