Challenges in speeding up solid-state battery development

J Janek, WG Zeier - Nature Energy, 2023 - nature.com
Recent worldwide efforts to establish solid-state batteries as a potentially safe and stable
high-energy and high-rate electrochemical storage technology still face issues with long …

Solid‐state Li–metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces

KJ Kim, M Balaish, M Wadaguchi… - Advanced Energy …, 2021 - Wiley Online Library
The introduction of new, safe, and reliable solid‐electrolyte chemistries and technologies
can potentially overcome the challenges facing their liquid counterparts while widening the …

A lithium superionic conductor for millimeter-thick battery electrode

Y Li, S Song, H Kim, K Nomoto, H Kim, X Sun, S Hori… - Science, 2023 - science.org
No design rules have yet been established for producing solid electrolytes with a lithium-ion
conductivity high enough to replace liquid electrolytes and expand the performance and …

Emerging halide superionic conductors for all-solid-state batteries: design, synthesis, and practical applications

H Kwak, S Wang, J Park, Y Liu, KT Kim, Y Choi… - ACS Energy …, 2022 - ACS Publications
Recently, halide superionic conductors have emerged as promising solid electrolyte (SE)
materials for all-solid-state batteries (ASSBs), owing to their inherent properties combining …

Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders

Y Nikodimos, CJ Huang, BW Taklu, WN Su… - Energy & …, 2022 - pubs.rsc.org
Sulfide solid electrolyte (S-SE) based all-solid-state batteries (ASSBs) have received
particular attention due to their outstanding ionic conductivity and higher energy density over …

Lithium/sulfide all‐solid‐state batteries using sulfide electrolytes

J Wu, S Liu, F Han, X Yao, C Wang - Advanced Materials, 2021 - Wiley Online Library
All‐solid‐state lithium batteries (ASSLBs) are considered as the next generation
electrochemical energy storage devices because of their high safety and energy density …

Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes

A Banerjee, X Wang, C Fang, EA Wu… - Chemical reviews, 2020 - ACS Publications
All-solid-state batteries (ASSBs) have attracted enormous attention as one of the critical
future technologies for safe and high energy batteries. With the emergence of several highly …

All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes

J Wu, L Shen, Z Zhang, G Liu, Z Wang, D Zhou… - Electrochemical Energy …, 2021 - Springer
All-solid-state lithium batteries (ASSLBs) have attracted increasing attention due to their high
safety and energy density. Among all corresponding solid electrolytes, sulfide electrolytes …

From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries

DHS Tan, A Banerjee, Z Chen, YS Meng - Nature nanotechnology, 2020 - nature.com
The recent discovery of highly conductive solid-state electrolytes (SSEs) has led to
tremendous progress in the development of all-solid-state batteries (ASSBs). Though …

Toward Sustainable All Solid‐State Li–Metal Batteries: Perspectives on Battery Technology and Recycling Processes

X Wu, G Ji, J Wang, G Zhou, Z Liang - Advanced Materials, 2023 - Wiley Online Library
Lithium (Li)‐based batteries are gradually evolving from the liquid to the solid state in terms
of safety and energy density, where all solid‐state Li–metal batteries (ASSLMBs) are …