Virtual fundamental classes of derived stacks I

AA Khan - arXiv preprint arXiv:1909.01332, 2019 - arxiv.org
We construct the\'etale motivic Borel-Moore homology of derived Artin stacks. Using a
derived version of the intrinsic normal cone, we construct fundamental classes of quasi …

Modules over algebraic cobordism

E Elmanto, M Hoyois, AA Khan, V Sosnilo… - … of Mathematics, Pi, 2020 - cambridge.org
We prove that the∞-category of MGL-modules over any scheme is equivalent to the∞-
category of motivic spectra with finite syntomic transfers. Using the recognition principle for …

Pixton's formula and Abel-Jacobi theory on the Picard stack

Y Bae, D Holmes, R Pandharipande, J Schmitt… - arXiv preprint arXiv …, 2020 - arxiv.org
Let $ A=(a_1,\ldots, a_n) $ be a vector of integers with $ d=\sum_ {i= 1}^ n a_i $. By partial
resolution of the classical Abel-Jacobi map, we construct a universal twisted double …

Motivic infinite loop spaces

E Elmanto, M Hoyois, AA Khan, V Sosnilo… - arXiv preprint arXiv …, 2017 - arxiv.org
We prove a recognition principle for motivic infinite P1-loop spaces over a perfect field. This
is achieved by developing a theory of framed motivic spaces, which is a motivic analogue of …

Aspects of enumerative geometry with quadratic forms

M Levine - Documenta Mathematica, 2020 - content.ems.press
Using the motivic stable homotopy category over a field k, a smooth variety X over k has an
Euler characteristic χ (X/k) in the Grothendieck-Witt ring GW (k). The rank of χ (X/k) is the …

Generalized cohomology theories for algebraic stacks

AA Khan, C Ravi - Advances in Mathematics, 2024 - Elsevier
We extend the stable motivic homotopy category of Voevodsky to the class of scalloped
algebraic stacks, and show that it admits the formalism of Grothendieck's six operations …

[PDF][PDF] Localization theorems for algebraic stacks

D Aranha, AA Khan, A Latyntsev, H Park… - arXiv preprint arXiv …, 2022 - 109.235.69.250
In this paper we consider three types of localization theorems for algebraic stacks:(i)
Concentration, or cohomological localization. Given an algebraic group acting on a scheme …

Cohomological Hall algebras for 3-Calabi-Yau categories

T Kinjo, H Park, P Safronov - arXiv preprint arXiv:2406.12838, 2024 - arxiv.org
The aim of this paper is to construct the cohomological Hall algebras for $3 $-Calabi--Yau
categories admitting a strong orientation data. This can be regarded as a mathematical …

Perfection in motivic homotopy theory

E Elmanto, AA Khan - Proceedings of the London Mathematical …, 2020 - Wiley Online Library
We prove a topological invariance statement for the Morel–Voevodsky motivic homotopy
category up to inverting exponential characteristics of residue fields. This implies in …

Universally counting curves in Calabi-Yau threefolds

J Pardon - arXiv preprint arXiv:2308.02948, 2023 - arxiv.org
We show that curve enumeration invariants of complex threefolds with nef anti-canonical
bundle are determined by their values on local curves. This statement and its proof are …