Biconservative surfaces of Riemannian 3-space forms $ N^ 3 (\rho) $, are either constant mean curvature (CMC) surfaces or rotational linear Weingarten surfaces verifying the …
S Nistor, C Oniciuc - Proceedings of the American Mathematical Society, 2019 - ams.org
We study the uniqueness of complete biconservative surfaces in the Euclidean space $\mathbb {R}^ 3$ and prove that the only complete biconservative regular surfaces in …
We construct simply connected, complete, non-C MC biconservative surfaces in the 3- dimensional hyperbolic space H 3, in an intrinsic and extrinsic way. We obtain three families …
S Nistor - Differential Geometry and its Applications, 2017 - Elsevier
We study in a uniform manner the properties of biconservative surfaces in arbitrary Riemannian manifolds. Biconservative surfaces being characterized by the vanishing of the …
Dans cette thèse, nous commençons par démontrer un Théorème de Continuation Unique pour les hypersurfaces non-minimales biharmoniques dans les sphères. Sous les bonnes …
YR Luo, D Yang, XY Zhu - Results in Mathematics, 2022 - Springer
We consider a class of surfaces satisfying an interesting geometric equation A∇ H= k H∇ H in non-flat 3-dimensional space forms N 3 (c), where A is the shape operator, H is the mean …
S Nistor, C Oniciuc - arXiv preprint arXiv:1701.07706, 2017 - arxiv.org
We survey some recent results on biconservative surfaces in $3 $-dimensional space forms $ N^ 3 (c) $ with a special emphasis on the $ c= 0$ and $ c= 1$ cases. We study the local …
D Yang, ZM Zhao - Revista de la Real Academia de Ciencias Exactas …, 2023 - Springer
We study the surfaces in 3-dimensional Lorentz space forms N 1 3 (c) that satisfy the geometric equation A∇ H= k H∇ H relating the shape operator A and the mean curvature H …