[图书][B] The analysis and geometry of Hardy's inequality

AA Balinsky, WD Evans, RT Lewis - 2015 - Springer
Alexander A. Balinsky W. Desmond Evans Roger T. Lewis Page 1 Universitext Alexander A.
Balinsky W. Desmond Evans Roger T. Lewis The Analysis and Geometry of Hardy's …

Self-adjoint extension schemes and modern applications to quantum Hamiltonians

M Gallone, A Michelangeli, S Albeverio - 2023 - Springer
This book introduces and discusses the self-adjoint extension problem for symmetric
operators on Hilbert space. It presents the classical von Neumann and Krein–Vishik–Birman …

Essential self-adjointness for combinatorial Schrödinger operators II-Metrically non complete graphs

Y Colin de Verdière, N Torki-Hamza, F Truc - … Physics, Analysis and …, 2011 - Springer
Essential Self-adjointness for Combinatorial Schrödinger Operators II-Metrically non Complete
Graphs Page 1 Math Phys Anal Geom (2011) 14:21–38 DOI 10.1007/s11040-010-9086-7 …

Quantum confinement on non-complete Riemannian manifolds

D Prandi, L Rizzi, M Seri - Journal of Spectral Theory, 2018 - ems.press
We consider the quantum completeness problem, ie the problem of confining quantum
particles, on a non-complete Riemannian manifold M equipped with a smooth measure …

On the essential self-adjointness of singular sub-Laplacians

V Franceschi, D Prandi, L Rizzi - Potential Analysis, 2020 - Springer
We prove a general essential self-adjointness criterion for sub-Laplacians on complete sub-
Riemannian manifolds, defined with respect to singular measures. We also show that, in the …

Essential self-adjointness for combinatorial Schrödinger operators III-Magnetic fields

Y Colin de Verdière, N Torki-Hamza… - Annales de la Faculté des …, 2011 - numdam.org
We define the magnetic Schrödinger operator on an infinite graph by the data of a magnetic
field, some weights on vertices and some weights on edges. We discuss essential self …

Laplaciens de graphes infinis I-Graphes métriquement complets

N Torki-Hamza - Confluentes Mathematici, 2010 - World Scientific
We introduce the weighted graph Laplacian Δω, c and the notion of Schrödinger operator of
the form Δ1, a+ W on a locally finite graph G. Concerning essential self-adjointness, we …

On the existence and uniqueness of self-adjoint realizations of discrete (magnetic) Schrödinger operators

M Schmidt - Analysis and geometry on graphs and manifolds, 2020 - books.google.com
In this expository chapter we answer two fundamental questions concerning discrete
magnetic Schrödinger operator associated with weighted graphs. We discuss when formal …

On geometric quantum confinement in Grushin-type manifolds

M Gallone, A Michelangeli, E Pozzoli - Zeitschrift für angewandte …, 2019 - Springer
We study the problem of so-called geometric quantum confinement in a class of two-
dimensional incomplete Riemannian manifold with metric of Grushin type. We employ a …

Confining quantum particles with a purely magnetic field

Y Colin de Verdière, F Truc - Annales de l'institut Fourier, 2010 - numdam.org
Let us consider a particle in a domain Ω in Rd (d⩾ 2) in the presence of a magnetic field B.
We will always assume that the topological boundary∂ Ω:= Ω Ω of Ω is compact. At the …