Generalized second derivative linear multistep methods based on the methods of Enright

SE Ogunfeyitimi, MNO Ikhile - International Journal of Applied and …, 2020 - Springer
The Adams-type second derivative multistep methods of WH Enright is generalized to a
class of boundary value methods for the numerical solution of initial value problems in …

Multi-block boundary value methods for ordinary differential and differential algebraic equations

SE Ogunfeyitimi, MNO Ikhile - Journal of the Korean Society for …, 2020 - koreascience.kr
In this paper, multi-block generalized backward differentiation methods for numerical
solutions of ordinary differential and differential algebraic equations are introduced. This …

A-stable Two Derivative Mono-Implicit Runge-Kutta Methods for ODEs

IB Aihie, RI Okuonghae - Earthline Journal of …, 2024 - earthlinepublishers.com
Abstract An A-stable Two Derivative Mono Implicit Runge-Kutta (ATDMIRK) method is
considered herein for the numerical solution of initial value problems (IVPs) in ordinary …

Extended Mono-Implicit Runge-Kutta methods for stiff ODEs

IB Aihie, RI Okuonghae - The Journals of the Nigerian …, 2022 - nampjournals.org.ng
An extended Mono Implicit Runge-kutta (EMIRK) method is considered herein for the
numerical solution of stiff initial value problems (IVPs) in ordinary differential equation …

Second-Derivative Two-Step Mono-Implicit Runge-Kutta Method for Stiff ODEs

IB Aihie, RI Okuonghae - International Journal of Mathematics …, 2024 - ijmttjournal.org
The study explores a specific class of Second Derivative Two-step mono-implicit Runge-
Kutta (SDTSMIRKs) methods within a fixed step-size environment. This method is …

On Some Multi-Block Reverse Adams Methods for Stiff Problems

J Oboyi, SE Ekoro, SE Ogunfeyitimi - International Journal of Applied and …, 2022 - Springer
In this article, multi-block boundary value methods suitable for solving stiff systems of initial
value problems (IVPs) are considered. This method is based on multi-block initial value …

Hybrid block formulae whose eigenvalues of Jacobian matrices are close to the imaginary axis of the complex plane

K Muka - Recent Advances in Natural Sciences, 2024 - flayoophl.com
Methods for integrating stiff initial value problems are required to be A-stable. Of great
interest are A-stable methods whose Jacobian matrices have their eigenvalues close to the …

Исследование спектральной устойчивости обобщенных методов Рунге-Кутты применительно к начально-краевым задачам для волнового уравнения

АП Янковский - Вычислительная механика сплошных сред, 2015 - journal.permsc.ru
Разработан общий алгоритм исследования спектральной устойчивости обобщенных
многостадийных методов Рунге-Кутты (МРК) разных порядков точности …

Analysis of the Spectral Stability of the Generalized Runge–Kutta Methods Applied to Initial-Boundary-Value Problems for Equations of the Parabolic Type. II. Implicit …

АP Yankovskii - Journal of Mathematical Sciences, 2019 - Springer
We consider specific realizations of different implicit generalized Runge–Kutta methods as
applied to the numerical integration with respect to time of initial-boundary-value problems …

Study of spectral stability of generalized Runge-Kutta methods in the initial-boundary problems for the wave equation

AP Yankovskii - Вычислительная механика сплошных сред, 2015 - elibrary.ru
A general algorithm is developed to study the spectral stability of generalized multi-stage
Runge-Kutta methods (RKMs) of different orders of accuracy for time integration of the wave …