An overview of high-resource automatic speech recognition methods and their empirical evaluation in low-resource environments

K Fatehi, MT Torres, A Kucukyilmaz - Speech Communication, 2024 - Elsevier
Deep learning methods for Automatic Speech Recognition (ASR) often rely on large-scale
training datasets, which are typically unavailable in low-resource environments (LREs). This …

Accent classification of the three major nigerian indigenous languages using 1d cnn lstm network model

AO Salau, TD Olowoyo, SO Akinola - Advances in Computational …, 2020 - Springer
Accent identification and classification pose a major challenge for speech recognition
systems, as various pronunciations of the same words by speakers of different races are …

Systematic Literature Review of Speaker Diarization Techniques: Toward Bridging Gaps in Low-resourced Languages Using Machine Learning

MZ Rahim, SS Juan, SN Junaini - Applications of Modelling and …, 2025 - arqiipubl.com
Speaker diarization, the process of segmenting audio into speaker-specific regions, plays a
critical role in various speech technologies by determining" who spoke when" in a …

Étude sur les représentations continues de mots appliquées à la détection automatique des erreurs de reconnaissance de la parole

S Ghannay - 2017 - theses.hal.science
Nous abordons, dans cette thèse, une étude sur les représentations continues de mots (en
anglais word embeddings) appliquées à la détection automatique des erreurs dans les …

Preliminary Evaluation of Convolutional Neural Network Acoustic Model for Iban Language Using NVIDIA NeMo

SO Michael, SS Juan, E Mit - Journal of Telecommunications and Information …, 2022 - jtit.pl
For the past few years, artificial neural networks (ANNs) have been one of the most common
solutions relied upon while developing automated speech recognition (ASR) acoustic …

Language modelling for a low-resource language in Sarawak, Malaysia

SS Juan, MFC Ismail, H Ujir, I Hipiny - … of the ICCEE 2019, Kuala Lumpur …, 2020 - Springer
This paper explores state-of-the-art techniques for creating language models in low-
resource setting. It is known that building a good statistical language model requires a large …

[PDF][PDF] A Review on Grapheme-to-Phoneme Modelling Techniques to Transcribe Pronunciation Variants for Under-Resourced Language.

E Irie, SS Juan, S Saee - Pertanika Journal of Science & …, 2023 - journals-jd.upm.edu.my
ABSTRACT A pronunciation dictionary (PD) is one of the components in an Automatic
Speech Recognition (ASR) system, a system that is used to convert speech to text. The …

Reconnaissance de la parole dans un contexte de cours magistraux: évaluation, avancées et enrichissement

S Mdhaffar - 2020 - hal.science
Cette thèse s' inscrit dans le cadre d'une étude sur le potentiel de la transcription
automatique pour l'instrumentation de situations pédagogiques. Notre contribution porte sur …

Accent Classification of the Three Major Nigerian Indigenous Languages Using 1D

CNNLN Model - Advances in Computational Intelligence …, 2020 - books.google.com
Research interest in recognizing and synthesizing accents dates back to several decades
ago, but just until the mid-twentieth century that the automatic speech recognition (ASR) …

Morphological System For Under-Resourced Languages Using Hybrid Approach

SB Saee - 2016 - search.proquest.com
Computational morphology covers the automatic analysis (recognition of the internal
structure) and generation (formation of a word) of words. As such, it is an ineluctable step in …