[HTML][HTML] Epileptic seizures detection using deep learning techniques: a review

A Shoeibi, M Khodatars, N Ghassemi, M Jafari… - International journal of …, 2021 - mdpi.com
A variety of screening approaches have been proposed to diagnose epileptic seizures,
using electroencephalography (EEG) and magnetic resonance imaging (MRI) modalities …

Automated detection and forecasting of covid-19 using deep learning techniques: A review

A Shoeibi, M Khodatars, M Jafari, N Ghassemi… - Neurocomputing, 2024 - Elsevier
Abstract In March 2020, the World Health Organization (WHO) declared COVID-19 a global
epidemic, caused by the SARS-CoV-2 virus. Initially, COVID-19 was diagnosed using real …

Diagnosis of brain diseases in fusion of neuroimaging modalities using deep learning: A review

A Shoeibi, M Khodatars, M Jafari, N Ghassemi… - Information …, 2023 - Elsevier
Brain diseases, including tumors and mental and neurological disorders, seriously threaten
the health and well-being of millions of people worldwide. Structural and functional …

Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review

M Khodatars, A Shoeibi, D Sadeghi… - Computers in biology …, 2021 - Elsevier
Abstract Accurate diagnosis of Autism Spectrum Disorder (ASD) followed by effective
rehabilitation is essential for the management of this disorder. Artificial intelligence (AI) …

An overview of artificial intelligence techniques for diagnosis of Schizophrenia based on magnetic resonance imaging modalities: Methods, challenges, and future …

D Sadeghi, A Shoeibi, N Ghassemi, P Moridian… - Computers in Biology …, 2022 - Elsevier
Schizophrenia (SZ) is a mental disorder that typically emerges in late adolescence or early
adulthood. It reduces the life expectancy of patients by 15 years. Abnormal behavior …

Detection of epileptic seizures on EEG signals using ANFIS classifier, autoencoders and fuzzy entropies

A Shoeibi, N Ghassemi, M Khodatars… - … Signal Processing and …, 2022 - Elsevier
Epileptic seizures are one of the most crucial neurological disorders, and their early
diagnosis will help the clinicians to provide accurate treatment for the patients. The …

A comprehensive comparison of handcrafted features and convolutional autoencoders for epileptic seizures detection in EEG signals

A Shoeibi, N Ghassemi, R Alizadehsani… - Expert Systems with …, 2021 - Elsevier
Epilepsy, a brain disease generally associated with seizures, has tremendous effects on
people's quality of life. Diagnosis of epileptic seizures is commonly performed on …

Handling of uncertainty in medical data using machine learning and probability theory techniques: A review of 30 years (1991–2020)

R Alizadehsani, M Roshanzamir, S Hussain… - Annals of Operations …, 2021 - Springer
Understanding the data and reaching accurate conclusions are of paramount importance in
the present era of big data. Machine learning and probability theory methods have been …

Automatic diagnosis of sleep apnea from biomedical signals using artificial intelligence techniques: Methods, challenges, and future works

P Moridian, A Shoeibi, M Khodatars… - … : Data Mining and …, 2022 - Wiley Online Library
Apnea is a sleep disorder that stops or reduces airflow for a short time during sleep. Sleep
apnea may last for a few seconds and happen for many while sleeping. This reduction in …

Epileptic seizures detection in EEG signals using fusion handcrafted and deep learning features

A Malekzadeh, A Zare, M Yaghoobi, HR Kobravi… - Sensors, 2021 - mdpi.com
Epilepsy is a brain disorder disease that affects people's quality of life.
Electroencephalography (EEG) signals are used to diagnose epileptic seizures. This paper …