[HTML][HTML] A review of physics-based machine learning in civil engineering

SR Vadyala, SN Betgeri, JC Matthews… - Results in Engineering, 2022 - Elsevier
The recent development of machine learning (ML) and Deep Learning (DL) increases the
opportunities in all the sectors. ML is a significant tool that can be applied across many …

Learning nonlinear reduced models from data with operator inference

B Kramer, B Peherstorfer… - Annual Review of Fluid …, 2024 - annualreviews.org
This review discusses Operator Inference, a nonintrusive reduced modeling approach that
incorporates physical governing equations by defining a structured polynomial form for the …

Eighty years of the finite element method: Birth, evolution, and future

WK Liu, S Li, HS Park - Archives of Computational Methods in …, 2022 - Springer
This document presents comprehensive historical accounts on the developments of finite
element methods (FEM) since 1941, with a specific emphasis on developments related to …

Data-driven prediction in dynamical systems: recent developments

A Ghadami, BI Epureanu - Philosophical Transactions of …, 2022 - royalsocietypublishing.org
In recent years, we have witnessed a significant shift toward ever-more complex and ever-
larger-scale systems in the majority of the grand societal challenges tackled in applied …

Survey of multifidelity methods in uncertainty propagation, inference, and optimization

B Peherstorfer, K Willcox, M Gunzburger - Siam Review, 2018 - SIAM
In many situations across computational science and engineering, multiple computational
models are available that describe a system of interest. These different models have varying …

[HTML][HTML] Physics-informed machine learning for reduced-order modeling of nonlinear problems

W Chen, Q Wang, JS Hesthaven, C Zhang - Journal of computational …, 2021 - Elsevier
A reduced basis method based on a physics-informed machine learning framework is
developed for efficient reduced-order modeling of parametrized partial differential equations …

Reduced basis methods for time-dependent problems

JS Hesthaven, C Pagliantini, G Rozza - Acta Numerica, 2022 - cambridge.org
Numerical simulation of parametrized differential equations is of crucial importance in the
study of real-world phenomena in applied science and engineering. Computational methods …

Learning physics-based models from data: perspectives from inverse problems and model reduction

O Ghattas, K Willcox - Acta Numerica, 2021 - cambridge.org
This article addresses the inference of physics models from data, from the perspectives of
inverse problems and model reduction. These fields develop formulations that integrate data …

A survey of projection-based model reduction methods for parametric dynamical systems

P Benner, S Gugercin, K Willcox - SIAM review, 2015 - SIAM
Numerical simulation of large-scale dynamical systems plays a fundamental role in studying
a wide range of complex physical phenomena; however, the inherent large-scale nature of …

A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses

R Yondo, E Andrés, E Valero - Progress in aerospace sciences, 2018 - Elsevier
Full scale aerodynamic wind tunnel testing, numerical simulation of high dimensional (full-
order) aerodynamic models or flight testing are some of the fundamental but complex steps …