Enhanced rolling horizon evolution algorithm with opponent model learning: Results for the fighting game AI competition

Z Tang, Y Zhu, D Zhao, SM Lucas - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
The Fighting Game AI Competition (FTGAIC) provides a challenging benchmark for two-
player video game artificial intelligence. The challenge arises from the large action space …

Evolving population method for real-time reinforcement learning

MJ Kim, JS Kim, CW Ahn - Expert Systems with Applications, 2023 - Elsevier
Reinforcement learning has recently been recognized as a promising means of machine
learning, but its applicability remains limited in real-time environment due to its short …

Towards social facilitation in audience participation games: fighting game ais whose strength depends on audience responses

P Paliyawan, K Sookhanaphibarn… - … IEEE Conference on …, 2020 - ieeexplore.ieee.org
This paper presents two AIs that enable a fighting game to be played or live-streamed as an
audience participation game. The proposed fighting game AIs imitates a social facilitation in …

A novel real-time design for fighting game AI

GT Lam, D Logofătu, C Bădică - Evolving Systems, 2021 - Springer
Real-time fighting games are challenging for computer agents in that actions must be
decided within a relatively short cycle of time, usually in milliseconds or less. That is only …

動的な難易度調整により対戦して楽しい格闘ゲームAI

邓士达, 伊藤毅志 - ゲームプログラミングワークショップ2020 論文集, 2020 - ipsj.ixsq.nii.ac.jp
論文抄録 対戦ゲームにおいて, 対戦相手の強さが適度であることは, 楽しさを維持する上で重要で
あることは知られている. 本研究では, 動的に難易度を調整して適度な難易度を実現し楽しさを維持 …

遺伝的アルゴリズムとモンテカルロ木探索を用いた動的難易度調整を行う格闘ゲームAI

澤野圭太, 奥出真理子 - … プログラミングワークショップ2023 論文集, 2023 - ipsj.ixsq.nii.ac.jp
論文抄録 ゲームを楽しむ上でプレイヤの技量とゲームの難易度が近い事は重要である. 従来,
プレイヤの技量に応じて動的難易度調整を行う格闘ゲーム AI について検討が進められている …