Contrastive representation learning: A framework and review

PH Le-Khac, G Healy, AF Smeaton - Ieee Access, 2020 - ieeexplore.ieee.org
Contrastive Learning has recently received interest due to its success in self-supervised
representation learning in the computer vision domain. However, the origins of Contrastive …

[HTML][HTML] Applications of reinforcement learning in energy systems

ATD Perera, P Kamalaruban - Renewable and Sustainable Energy …, 2021 - Elsevier
Energy systems undergo major transitions to facilitate the large-scale penetration of
renewable energy technologies and improve efficiencies, leading to the integration of many …

Mastering diverse domains through world models

D Hafner, J Pasukonis, J Ba, T Lillicrap - arXiv preprint arXiv:2301.04104, 2023 - arxiv.org
Developing a general algorithm that learns to solve tasks across a wide range of
applications has been a fundamental challenge in artificial intelligence. Although current …

Curl: Contrastive unsupervised representations for reinforcement learning

M Laskin, A Srinivas, P Abbeel - International conference on …, 2020 - proceedings.mlr.press
Abstract We present CURL: Contrastive Unsupervised Representations for Reinforcement
Learning. CURL extracts high-level features from raw pixels using contrastive learning and …

Contrastive learning as goal-conditioned reinforcement learning

B Eysenbach, T Zhang, S Levine… - Advances in Neural …, 2022 - proceedings.neurips.cc
In reinforcement learning (RL), it is easier to solve a task if given a good representation.
While deep RL should automatically acquire such good representations, prior work often …

Masked world models for visual control

Y Seo, D Hafner, H Liu, F Liu, S James… - … on Robot Learning, 2023 - proceedings.mlr.press
Visual model-based reinforcement learning (RL) has the potential to enable sample-efficient
robot learning from visual observations. Yet the current approaches typically train a single …

Reinforcement learning with action-free pre-training from videos

Y Seo, K Lee, SL James… - … Conference on Machine …, 2022 - proceedings.mlr.press
Recent unsupervised pre-training methods have shown to be effective on language and
vision domains by learning useful representations for multiple downstream tasks. In this …

Data-efficient reinforcement learning with self-predictive representations

M Schwarzer, A Anand, R Goel, RD Hjelm… - arXiv preprint arXiv …, 2020 - arxiv.org
While deep reinforcement learning excels at solving tasks where large amounts of data can
be collected through virtually unlimited interaction with the environment, learning from …

Model-based reinforcement learning: A survey

TM Moerland, J Broekens, A Plaat… - … and Trends® in …, 2023 - nowpublishers.com
Sequential decision making, commonly formalized as Markov Decision Process (MDP)
optimization, is an important challenge in artificial intelligence. Two key approaches to this …

Behavior from the void: Unsupervised active pre-training

H Liu, P Abbeel - Advances in Neural Information …, 2021 - proceedings.neurips.cc
We introduce a new unsupervised pre-training method for reinforcement learning called
APT, which stands for Active Pre-Training. APT learns behaviors and representations by …