Medical image segmentation using deep semantic-based methods: A review of techniques, applications and emerging trends

I Qureshi, J Yan, Q Abbas, K Shaheed, AB Riaz… - Information …, 2023 - Elsevier
Semantic-based segmentation (Semseg) methods play an essential part in medical imaging
analysis to improve the diagnostic process. In Semseg technique, every pixel of an image is …

A survey on deep learning in medical image analysis

G Litjens, T Kooi, BE Bejnordi, AAA Setio, F Ciompi… - Medical image …, 2017 - Elsevier
Deep learning algorithms, in particular convolutional networks, have rapidly become a
methodology of choice for analyzing medical images. This paper reviews the major deep …

Fastsurfer-a fast and accurate deep learning based neuroimaging pipeline

L Henschel, S Conjeti, S Estrada, K Diers, B Fischl… - NeuroImage, 2020 - Elsevier
Traditional neuroimage analysis pipelines involve computationally intensive, time-
consuming optimization steps, and thus, do not scale well to large cohort studies with …

Deep learning based brain tumor segmentation: a survey

Z Liu, L Tong, L Chen, Z Jiang, F Zhou, Q Zhang… - Complex & intelligent …, 2023 - Springer
Brain tumor segmentation is one of the most challenging problems in medical image
analysis. The goal of brain tumor segmentation is to generate accurate delineation of brain …

Variability and reproducibility in deep learning for medical image segmentation

F Renard, S Guedria, ND Palma, N Vuillerme - Scientific Reports, 2020 - nature.com
Medical image segmentation is an important tool for current clinical applications. It is the
backbone of numerous clinical diagnosis methods, oncological treatments and computer …

Deep learning for brain MRI segmentation: state of the art and future directions

Z Akkus, A Galimzianova, A Hoogi, DL Rubin… - Journal of digital …, 2017 - Springer
Quantitative analysis of brain MRI is routine for many neurological diseases and conditions
and relies on accurate segmentation of structures of interest. Deep learning-based …

[HTML][HTML] Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation

K Kamnitsas, C Ledig, VFJ Newcombe… - Medical image …, 2017 - Elsevier
We propose a dual pathway, 11-layers deep, three-dimensional Convolutional Neural
Network for the challenging task of brain lesion segmentation. The devised architecture is …

VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images

H Chen, Q Dou, L Yu, J Qin, PA Heng - NeuroImage, 2018 - Elsevier
Segmentation of key brain tissues from 3D medical images is of great significance for brain
disease diagnosis, progression assessment and monitoring of neurologic conditions. While …

A deep learning model integrating FCNNs and CRFs for brain tumor segmentation

X Zhao, Y Wu, G Song, Z Li, Y Zhang, Y Fan - Medical image analysis, 2018 - Elsevier
Accurate and reliable brain tumor segmentation is a critical component in cancer diagnosis,
treatment planning, and treatment outcome evaluation. Build upon successful deep learning …

Automatic segmentation of MR brain images with a convolutional neural network

P Moeskops, MA Viergever, AM Mendrik… - IEEE transactions on …, 2016 - ieeexplore.ieee.org
Automatic segmentation in MR brain images is important for quantitative analysis in large-
scale studies with images acquired at all ages. This paper presents a method for the …