A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation

L Wu, X He, X Wang, K Zhang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Influenced by the great success of deep learning in computer vision and language
understanding, research in recommendation has shifted to inventing new recommender …

A survey on session-based recommender systems

S Wang, L Cao, Y Wang, QZ Sheng, MA Orgun… - ACM Computing …, 2021 - dl.acm.org
Recommender systems (RSs) have been playing an increasingly important role for informed
consumption, services, and decision-making in the overloaded information era and digitized …

Tallrec: An effective and efficient tuning framework to align large language model with recommendation

K Bao, J Zhang, Y Zhang, W Wang, F Feng… - Proceedings of the 17th …, 2023 - dl.acm.org
Large Language Models (LLMs) have demonstrated remarkable performance across
diverse domains, thereby prompting researchers to explore their potential for use in …

Text is all you need: Learning language representations for sequential recommendation

J Li, M Wang, J Li, J Fu, X Shen, J Shang… - Proceedings of the 29th …, 2023 - dl.acm.org
Sequential recommendation aims to model dynamic user behavior from historical
interactions. Existing methods rely on either explicit item IDs or general textual features for …

Filter-enhanced MLP is all you need for sequential recommendation

K Zhou, H Yu, WX Zhao, JR Wen - … of the ACM web conference 2022, 2022 - dl.acm.org
Recently, deep neural networks such as RNN, CNN and Transformer have been applied in
the task of sequential recommendation, which aims to capture the dynamic preference …

Self-supervised hypergraph convolutional networks for session-based recommendation

X Xia, H Yin, J Yu, Q Wang, L Cui… - Proceedings of the AAAI …, 2021 - ojs.aaai.org
Session-based recommendation (SBR) focuses on next-item prediction at a certain time
point. As user profiles are generally not available in this scenario, capturing the user intent …

Llara: Large language-recommendation assistant

J Liao, S Li, Z Yang, J Wu, Y Yuan, X Wang… - Proceedings of the 47th …, 2024 - dl.acm.org
Sequential recommendation aims to predict users' next interaction with items based on their
past engagement sequence. Recently, the advent of Large Language Models (LLMs) has …

Stan: Spatio-temporal attention network for next location recommendation

Y Luo, Q Liu, Z Liu - Proceedings of the web conference 2021, 2021 - dl.acm.org
The next location recommendation is at the core of various location-based applications.
Current state-of-the-art models have attempted to solve spatial sparsity with hierarchical …

Where to go next for recommender systems? id-vs. modality-based recommender models revisited

Z Yuan, F Yuan, Y Song, Y Li, J Fu, F Yang… - Proceedings of the 46th …, 2023 - dl.acm.org
Recommendation models that utilize unique identities (IDs for short) to represent distinct
users and items have been state-of-the-art (SOTA) and dominated the recommender …

[PDF][PDF] Graph contextualized self-attention network for session-based recommendation.

C Xu, P Zhao, Y Liu, VS Sheng, J Xu, F Zhuang, J Fang… - IJCAI, 2019 - ijcai.org
Session-based recommendation, which aims to predict the user's immediate next action
based on anonymous sessions, is a key task in many online services (eg, e-commerce …