D Betsakos, MD Contreras… - Revista Matematica …, 2020 - ems.press
On the rate of convergence of semigroups of holomorphic functions at the Denjoy–Wolff point Page 1 Rev. Mat. Iberoam. 36 (2020), no. 6, 1659–1686 doi 10.4171/rmi/1179 c European …
F Bracci, MD Contreras, S Díaz-Madrigal… - … Mathématiques Pures et …, 2020 - Elsevier
Let (ϕ t) be a holomorphic semigroup of the unit disc (ie, the flow of a semicomplete holomorphic vector field) without fixed points in the unit disc and let Ω be the starlike at …
The embeddability problem is a very old and hard problem in discrete holomorphic iteration which deals with determining general conditions on a given univalent self-map $\varphi $ of …
F Bracci, MD Contreras, S Díaz-Madrigal… - Annali di Matematica …, 2019 - Springer
We study the backward invariant set of one-parameter semigroups of holomorphic self-maps of the unit disc. Such a set is foliated in maximal invariant curves, and its open connected …
We highlight a condition, the approaching geodesics property, on a proper geodesic Gromov hyperbolic metric space, which implies that the horofunction compactification is …
L Arosio - The Journal of Geometric Analysis, 2017 - Springer
We prove the existence and the essential uniqueness of canonical models for the forward (resp., backward) iteration of a holomorphic self-map f of a cocompact Kobayashi hyperbolic …
F Bracci, M Contreras, S Díaz-Madrigal… - Transactions of the …, 2020 - ams.org
Let $\Delta\subsetneq\mathbb {C} $ be a simply connected domain, let $ f:\mathbb {D}\to\Delta $ be a Riemann map, and let $\{z_k\}\subset\Delta $ be a compactly divergent …
I Chalendar, P Gumenyuk, JE McCarthy - arXiv preprint arXiv:2305.07526, 2023 - arxiv.org
Motivated by the study of composition operators on model spaces launched by Mashreghi and Shabankha we consider the following problem: for a given inner function …