Gradient regularity for mixed local-nonlocal quasilinear parabolic equations

K Adimurthi, H Prasad, V Tewary - arXiv preprint arXiv:2307.02363, 2023 - arxiv.org
In this paper, we prove local H\" older continuity for the spatial gradient of weak solutions to
$$ u_t-\text {div}(|\nabla u|^{p-2}\nabla u)+\text {PV}\int_ {\mathbb {R}^ n}\frac {| u (x, t)-u (y …

Global Calderón–Zygmund estimate for p-Laplacian parabolic system

SS Byun, W Kim - Mathematische Annalen, 2022 - Springer
We establish a global Calderón–Zygmund theory for the weak solution of the following p-
Laplacian system ut-div a (x, t)|∇ u| p-2∇ u=-div| F| p-2 F+ f in Ω T, u= 0 on∂ Ω×(0, T), u= u …

Global Higher Integrability for Symmetric p(xt)-Laplacian System

C Sin - Mediterranean Journal of Mathematics, 2023 - Springer
In Ω ⊂ R n \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts}
\usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} …

Global Calderón–Zygmund theory for parabolic p-Laplacian system: the case 1< p≤ 2nn+ 2

K Chen, QH Nguyen, N Zhao - Journal of Functional Analysis, 2023 - Elsevier
The aim of this paper is to establish global Calderón–Zygmund theory to parabolic p-
Laplacian system: ut− div (|∇ u| p− 2∇ u)= div (| F| p− 2 F) in Ω×(0, T)⊂ R n+ 1, proving that …

Besov estimates for weak solutions of a class of quasilinear parabolic equations with general growth

F Yao - Mathematische Nachrichten, 2023 - Wiley Online Library
In this paper, we obtain the local higher fractional differentiability regularity estimates in
Besov spaces of weak solutions for the quasilinear parabolic equations with general growth …

Regularity for quasilinear vectorial elliptic systems via an iterative scheme with numerical applications

L Koch - Nonlinear Differential Equations and Applications …, 2022 - Springer
Regularity for quasilinear vectorial elliptic systems via an iterative scheme with numerical
applications | Nonlinear Differential Equations and Applications NoDEA Skip to main content …