Deep Reinforcement Learning for Bipedal Locomotion: A Brief Survey

L Bao, J Humphreys, T Peng, C Zhou - arXiv preprint arXiv:2404.17070, 2024 - arxiv.org
Bipedal robots are garnering increasing global attention due to their potential applications
and advancements in artificial intelligence, particularly in Deep Reinforcement Learning …

Cooperative dual-actor proximal policy optimization algorithm for multi-robot complex control task

J Baltes, I Akbar, S Saeedvand - Advanced Engineering Informatics, 2025 - Elsevier
This paper introduces a novel multi-agent Deep Reinforcement Learning (DRL) framework
named the Cooperative Dual-Actor Proximal Policy Optimization (CDA-PPO) algorithm …

Aircraft Upset Recovery Strategy and Pilot Assistance System Based on Reinforcement Learning

J Wang, P Zhao, Z Zhang, T Yue, H Liu, L Wang - Aerospace, 2024 - mdpi.com
The upset state is an unexpected flight state, which is characterized by an unintentional
deviation from normal operating parameters. It is difficult for the pilot to recover the aircraft …

Stability-constrained reinforcement learning for level control of nonlinear coupled tank system: an experimental study

K Phothongkum, S Kuntanapreeda - Neural Computing and Applications, 2024 - Springer
Neural network (NN) control systems face significant challenges in the theoretical
examination of closed-loop stability, despite their success. This paper presents a …

A hierarchical deep reinforcement learning algorithm for typing with a dual-arm humanoid robot

J Baltes, H Mandala, S Saeedvand - The Knowledge Engineering …, 2024 - cambridge.org
Recently, the field of robotics development and control has been advancing rapidly. Even
though humans effortlessly manipulate everyday objects, enabling robots to interact with …

Hybrid learning-based visual path following for an industrial robot

MC Bingol, O Aydogmus - Robotica, 2024 - cambridge.org
This study proposes a novel hybrid learning approach for developing a visual path-following
algorithm for industrial robots. The process involves three steps: data collection from a …

新型態合作型深度強化學習方法用於多智能個體協作任務

R Afriza - 臺灣師範大學電機工程學系學位論文, 2024 - airitilibrary.com
Multi-Agent Reinforcement Learning (MARL) faces formidable challenges when tackling
cooperative tasks due to the expansive state space. Traditional approaches, such as …

針對單一和多智能體人形機器人之創新雙演員近端策略優化算法

A Ilham - 臺灣師範大學電機工程學系學位論文, 2024 - airitilibrary.com
Single-agent and multi-agent systems are integral to the dynamic environmental processes
of reinforcement learning in advanced humanoid robotic applications. This thesis introduces …

Интеллектуальные робастные контроллеры триботронных конических опор скольжения

ЮН Казаков, ДВ Шутин, ЛА Савин - VESTNIK of Samara …, 2024 - journals.ssau.ru
Триботронные опорные узлы представляют собой мультифизическую систему,
основанную на совокупности гидродинамических, теплофизических, динамических …

[引用][C] Intelligent robust controllers for tribotronic conical fluid film bearings

YN Kazakov, DV Shutin… - Вестник …, 2024 - Samara National Research …