Tsxtend: A tool for batch analysis of temporal sensor data

R Morcillo-Jimenez, K Gutiérrez-Batista… - Energies, 2023 - mdpi.com
Pre-processing and analysis of sensor data present several challenges due to their
increasingly complex structure and lack of consistency. In this paper, we present TSxtend, a …

PyDTS: A Python Toolkit for Deep Learning Time Series Modelling

PA Schirmer, I Mporas - Entropy, 2024 - mdpi.com
In this article, the topic of time series modelling is discussed. It highlights the criticality of
analysing and forecasting time series data across various sectors, identifying five primary …

Machine Learning Techniques for Spatio-Temporal Air Pollution Prediction to Drive Sustainable Urban Development in the Era of Energy and Data Transformation

M Zareba, S Cogiel, T Danek, E Weglinska - Energies, 2024 - mdpi.com
Sustainable urban development in the era of energy and digital transformation is crucial
from a societal perspective. Utilizing modern techniques for analyzing large datasets …

Machine Learning-Enhanced Pairs Trading

E Hadad, S Hodarkar, B Lemeneh, D Shasha - Forecasting, 2024 - mdpi.com
Forecasting returns in financial markets is notoriously challenging due to the resemblance of
price changes to white noise. In this paper, we propose novel methods to address this …

Explainable boosted combining global and local feature multivariate regression model for deformation prediction during braced deep excavations

W Zhang, P Shi, Z Wang, H Zhao, X Zhou… - Engineering …, 2023 - emerald.com
Purpose An accurate prediction of the deformation of retaining structures is critical for
ensuring the stability and safety of braced deep excavations, while the high nonlinear and …

Cenová predikce bitcoinu pomocí neuronových sítí

R Široký - 2024 - is.muni.cz
Anotace Cílem této práce je porovnat různé architektury hlubokých neuronových sítí
aplikovaných na predikci ceny Bitcoinu. Vybrané architektury představují vícevrstvý …