On tangent sphere bundles with small or large constant radius

O Kowalski, M Sekizawa - Annals of Global Analysis and Geometry, 2000 - Springer
On Tangent Sphere Bundles with Small or Large Constant Radius Page 1 Annals of Global
Analysis and Geometry 18: 207–219, 2000. © 2000 Kluwer Academic Publishers. Printed in the …

[PDF][PDF] Semi-symmetric contact metric three-manifolds

G Calvaruso, D Perrone - … Journal= 横濱市立大學紀要. D 部門 …, 2002 - ynu.repo.nii.ac.jp
SEMI-SYMMETRIC CONTACT METRIC Page 1 YOKOHAMA MATHEMATICAL JOURNAL VOL.
49, 2002 SEMI-SYMMETRIC CONTACT METRIC THREE-MANIFOLDS By G. CALVARUSO …

g-Natural Contact Metrics on Unit Tangent Sphere Bundles

MTK Abbassi, G Calvaruso - Monatshefte für Mathematik, 2007 - Springer
We construct a three-parameter family of contact metric structures on the unit tangent sphere
bundle T 1 M of a Riemannian manifold M and we study some of their special properties …

Unit tangent sphere bundles and two-point homogeneous spaces

E Boeckx, D Perrone, L Vanhecke - Periodica Mathematica Hungarica, 1998 - Springer
We characterize two-point homogeneous spaces, locally symmetric spaces, C and B-spaces
via properties of the standard contact metric structure of their unit tangent sphere bundle …

On the classification of contact Riemannian manifolds satisfying the condition (C)

JT CHO, SUNH CHUN - Glasgow Mathematical Journal, 2003 - cambridge.org
ON THE CLASSIFICATION OF CONTACT RIEMANNIAN MANIFOLDS SATISFYING THE
CONDITION (C) Page 1 Glasgow Math. J. 45 (2003) 475–492. C 2003 Glasgow …

When is the unit tangent sphere bundle semi-symmetric?

E Boeckx, G Calvaruso - Tohoku Mathematical Journal, Second …, 2004 - jstage.jst.go.jp
We prove that the unit tangent sphere bundle of a Riemannian manifold is semi-symmetric if
and only if it is locally symmetric, ie, the base manifold is either flat or it is two-dimensional …

Contact metric geometry of the unit tangent sphere bundle

G Calvaruso - Complex, Contact and Symmetric Manifolds: In Honor …, 2005 - Springer
Contact Metric Geometry of the Unit Tangent Sphere Bundle Page 1 Contact Metric Geometry
of the Unit Tangent Sphere Bundle G. Calvaruso Dipartimento di Matematica “E. De Giorgi” …

[HTML][HTML] 单位球丛上L (g) 泛函变分问题

康恒 - Pure Mathematics, 2024 - hanspub.org
本文研究了紧切触度量流形(M, η, g) 上的L (g) 泛函, 该泛函是对Reeb 向量场方向的里奇曲率在
切触度量流形上的积分. 特别地, 我们考虑了紧黎曼流形的单位球丛这一特殊的切触度量流形 …

[PDF][PDF] Curvature properties of g-natural contact metric structures on unit tangent sphere bundles

MTKAG Calvaruso - Contributions to Algebra and Geometry, 2009 - emis.icm.edu.pl
Curvature Properties of g-natural Contact Metric Structures on Unit Tangent Sphere
Bundles Page 1 Beiträge zur Algebra und Geometrie Contributions to Algebra and …

[PDF][PDF] Flow-invariant structures on unit tangent bundles

E Boeckx, JT Cho, SH Chun - Publicationes Mathematicae, 2007 - scholar.archive.org
We study unit tangent bundles T1M for which the structural operator h= 1 2£ ξφ, its
characteristic derivative h=∇ ξh or the characteristic Jacobi operator l= R (·, ξ) ξ is invariant …