We construct a three-parameter family of contact metric structures on the unit tangent sphere bundle T 1 M of a Riemannian manifold M and we study some of their special properties …
E Boeckx, D Perrone, L Vanhecke - Periodica Mathematica Hungarica, 1998 - Springer
We characterize two-point homogeneous spaces, locally symmetric spaces, C and B-spaces via properties of the standard contact metric structure of their unit tangent sphere bundle …
E Boeckx, G Calvaruso - Tohoku Mathematical Journal, Second …, 2004 - jstage.jst.go.jp
We prove that the unit tangent sphere bundle of a Riemannian manifold is semi-symmetric if and only if it is locally symmetric, ie, the base manifold is either flat or it is two-dimensional …
G Calvaruso - Complex, Contact and Symmetric Manifolds: In Honor …, 2005 - Springer
Contact Metric Geometry of the Unit Tangent Sphere Bundle Page 1 Contact Metric Geometry of the Unit Tangent Sphere Bundle G. Calvaruso Dipartimento di Matematica “E. De Giorgi” …
MTKAG Calvaruso - Contributions to Algebra and Geometry, 2009 - emis.icm.edu.pl
Curvature Properties of g-natural Contact Metric Structures on Unit Tangent Sphere Bundles Page 1 Beiträge zur Algebra und Geometrie Contributions to Algebra and …
E Boeckx, JT Cho, SH Chun - Publicationes Mathematicae, 2007 - scholar.archive.org
We study unit tangent bundles T1M for which the structural operator h= 1 2£ ξφ, its characteristic derivative h=∇ ξh or the characteristic Jacobi operator l= R (·, ξ) ξ is invariant …