Radiomics and radiogenomics in gliomas: a contemporary update

G Singh, S Manjila, N Sakla, A True, AH Wardeh… - British journal of …, 2021 - nature.com
The natural history and treatment landscape of primary brain tumours are complicated by the
varied tumour behaviour of primary or secondary gliomas (high-grade transformation of low …

Characterization of PET/CT images using texture analysis: the past, the present… any future?

M Hatt, F Tixier, L Pierce, PE Kinahan… - European journal of …, 2017 - Springer
After seminal papers over the period 2009–2011, the use of texture analysis of PET/CT
images for quantification of intratumour uptake heterogeneity has received increasing …

Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge

S Bakas, M Reyes, A Jakab, S Bauer… - arXiv preprint arXiv …, 2018 - arxiv.org
Gliomas are the most common primary brain malignancies, with different degrees of
aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, ie …

Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features

S Bakas, H Akbari, A Sotiras, M Bilello, M Rozycki… - Scientific data, 2017 - nature.com
Gliomas belong to a group of central nervous system tumors, and consist of various sub-
regions. Gold standard labeling of these sub-regions in radiographic imaging is essential for …

[HTML][HTML] Machine learning methods for quantitative radiomic biomarkers

C Parmar, P Grossmann, J Bussink, P Lambin… - Scientific reports, 2015 - nature.com
Radiomics extracts and mines large number of medical imaging features quantifying tumor
phenotypic characteristics. Highly accurate and reliable machine-learning approaches can …

The University of Pennsylvania glioblastoma (UPenn-GBM) cohort: advanced MRI, clinical, genomics, & radiomics

S Bakas, C Sako, H Akbari, M Bilello, A Sotiras… - Scientific data, 2022 - nature.com
Glioblastoma is the most common aggressive adult brain tumor. Numerous studies have
reported results from either private institutional data or publicly available datasets. However …

Defining the biological basis of radiomic phenotypes in lung cancer

P Grossmann, O Stringfield, N El-Hachem, MM Bui… - elife, 2017 - elifesciences.org
Medical imaging can visualize characteristics of human cancer noninvasively. Radiomics is
an emerging field that translates these medical images into quantitative data to enable …

MRI features predict survival and molecular markers in diffuse lower-grade gliomas

H Zhou, M Vallières, HX Bai, C Su, H Tang… - Neuro …, 2017 - academic.oup.com
Background. Previous studies have shown that MR imaging features can be used to predict
survival and molecular profile of glioblastoma. However, no study of a similar type has been …

Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer

C Parmar, RTH Leijenaar, P Grossmann… - Scientific reports, 2015 - nature.com
Radiomics provides a comprehensive quantification of tumor phenotypes by extracting and
mining large number of quantitative image features. To reduce the redundancy and compare …

Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer

C Parmar, P Grossmann, D Rietveld… - Frontiers in …, 2015 - frontiersin.org
Introduction “Radiomics” extracts and mines a large number of medical imaging features in a
non-invasive and cost-effective way. The underlying assumption of radiomics is that these …