Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming

TA Shaikh, T Rasool, FR Lone - Computers and Electronics in Agriculture, 2022 - Elsevier
The digitalization of data has resulted in a data tsunami in practically every industry of data-
driven enterprise. Furthermore, man-to-machine (M2M) digital data handling has …

Machine learning in agriculture: A comprehensive updated review

L Benos, AC Tagarakis, G Dolias, R Berruto, D Kateris… - Sensors, 2021 - mdpi.com
The digital transformation of agriculture has evolved various aspects of management into
artificial intelligent systems for the sake of making value from the ever-increasing data …

Forecasting of crop yield using remote sensing data, agrarian factors and machine learning approaches

JP Bharadiya, NT Tzenios… - Journal of Engineering …, 2023 - classical.goforpromo.com
The art of predicting crop production is done before the crop is harvested. Crop output
forecasts will help people make timely judgments concerning food policy, prices in markets …

[HTML][HTML] Crop yield prediction using machine learning: A systematic literature review

T Van Klompenburg, A Kassahun, C Catal - Computers and electronics in …, 2020 - Elsevier
Abstract Machine learning is an important decision support tool for crop yield prediction,
including supporting decisions on what crops to grow and what to do during the growing …

Technological revolutions in smart farming: Current trends, challenges & future directions

V Sharma, AK Tripathi, H Mittal - Computers and Electronics in Agriculture, 2022 - Elsevier
With increasing population, the demand for agricultural productivity is rising to meet the goal
of “Zero Hunger”. Consequently, farmers have optimized the agricultural activities in a …

A systematic literature review on crop yield prediction with deep learning and remote sensing

P Muruganantham, S Wibowo, S Grandhi, NH Samrat… - Remote Sensing, 2022 - mdpi.com
Deep learning has emerged as a potential tool for crop yield prediction, allowing the model
to automatically extract features and learn from the datasets. Meanwhile, smart farming …

[HTML][HTML] Automation and digitization of agriculture using artificial intelligence and internet of things

A Subeesh, CR Mehta - Artificial Intelligence in Agriculture, 2021 - Elsevier
The growing population and effect of climate change have put a huge responsibility on the
agriculture sector to increase food-grain production and productivity. In most of the countries …

[HTML][HTML] Deep learning based computer vision approaches for smart agricultural applications

VG Dhanya, A Subeesh, NL Kushwaha… - Artificial Intelligence in …, 2022 - Elsevier
The agriculture industry is undergoing a rapid digital transformation and is growing powerful
by the pillars of cutting-edge approaches like artificial intelligence and allied technologies …

Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt

M Shahhosseini, G Hu, I Huber, SV Archontoulis - Scientific reports, 2021 - nature.com
This study investigates whether coupling crop modeling and machine learning (ML)
improves corn yield predictions in the US Corn Belt. The main objectives are to explore …

A comprehensive review of crop yield prediction using machine learning approaches with special emphasis on palm oil yield prediction

M Rashid, BS Bari, Y Yusup, MA Kamaruddin… - IEEE …, 2021 - ieeexplore.ieee.org
An early and reliable estimation of crop yield is essential in quantitative and financial
evaluation at the field level for determining strategic plans in agricultural commodities for …