A survey on deep learning and its applications

S Dong, P Wang, K Abbas - Computer Science Review, 2021 - Elsevier
Deep learning, a branch of machine learning, is a frontier for artificial intelligence, aiming to
be closer to its primary goal—artificial intelligence. This paper mainly adopts the summary …

Graph convolutional networks: a comprehensive review

S Zhang, H Tong, J Xu, R Maciejewski - Computational Social Networks, 2019 - Springer
Graphs naturally appear in numerous application domains, ranging from social analysis,
bioinformatics to computer vision. The unique capability of graphs enables capturing the …

How attentive are graph attention networks?

S Brody, U Alon, E Yahav - arXiv preprint arXiv:2105.14491, 2021 - arxiv.org
Graph Attention Networks (GATs) are one of the most popular GNN architectures and are
considered as the state-of-the-art architecture for representation learning with graphs. In …

Self-supervised learning: Generative or contrastive

X Liu, F Zhang, Z Hou, L Mian, Z Wang… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Deep supervised learning has achieved great success in the last decade. However, its
defects of heavy dependence on manual labels and vulnerability to attacks have driven …

Simple and deep graph convolutional networks

M Chen, Z Wei, Z Huang, B Ding… - … conference on machine …, 2020 - proceedings.mlr.press
Graph convolutional networks (GCNs) are a powerful deep learning approach for graph-
structured data. Recently, GCNs and subsequent variants have shown superior performance …

Unifying the design space and optimizing linear and nonlinear truss metamaterials by generative modeling

L Zheng, K Karapiperis, S Kumar… - Nature …, 2023 - nature.com
The rise of machine learning has fueled the discovery of new materials and, especially,
metamaterials—truss lattices being their most prominent class. While their tailorable …

Gcc: Graph contrastive coding for graph neural network pre-training

J Qiu, Q Chen, Y Dong, J Zhang, H Yang… - Proceedings of the 26th …, 2020 - dl.acm.org
Graph representation learning has emerged as a powerful technique for addressing real-
world problems. Various downstream graph learning tasks have benefited from its recent …

Lightgcn: Simplifying and powering graph convolution network for recommendation

X He, K Deng, X Wang, Y Li, Y Zhang… - Proceedings of the 43rd …, 2020 - dl.acm.org
Graph Convolution Network (GCN) has become new state-of-the-art for collaborative
filtering. Nevertheless, the reasons of its effectiveness for recommendation are not well …

Neural graph collaborative filtering

X Wang, X He, M Wang, F Feng, TS Chua - Proceedings of the 42nd …, 2019 - dl.acm.org
Learning vector representations (aka. embeddings) of users and items lies at the core of
modern recommender systems. Ranging from early matrix factorization to recently emerged …

Kgat: Knowledge graph attention network for recommendation

X Wang, X He, Y Cao, M Liu, TS Chua - Proceedings of the 25th ACM …, 2019 - dl.acm.org
To provide more accurate, diverse, and explainable recommendation, it is compulsory to go
beyond modeling user-item interactions and take side information into account. Traditional …