[HTML][HTML] Survey of explainable artificial intelligence techniques for biomedical imaging with deep neural networks

S Nazir, DM Dickson, MU Akram - Computers in Biology and Medicine, 2023 - Elsevier
Artificial Intelligence (AI) techniques of deep learning have revolutionized the disease
diagnosis with their outstanding image classification performance. In spite of the outstanding …

Explainability of artificial intelligence methods, applications and challenges: A comprehensive survey

W Ding, M Abdel-Basset, H Hawash, AM Ali - Information Sciences, 2022 - Elsevier
The continuous advancement of Artificial Intelligence (AI) has been revolutionizing the
strategy of decision-making in different life domains. Regardless of this achievement, AI …

Interpretable machine learning–a brief history, state-of-the-art and challenges

C Molnar, G Casalicchio, B Bischl - Joint European conference on …, 2020 - Springer
We present a brief history of the field of interpretable machine learning (IML), give an
overview of state-of-the-art interpretation methods and discuss challenges. Research in IML …

Benchmarking and survey of explanation methods for black box models

F Bodria, F Giannotti, R Guidotti, F Naretto… - Data Mining and …, 2023 - Springer
The rise of sophisticated black-box machine learning models in Artificial Intelligence
systems has prompted the need for explanation methods that reveal how these models work …

Explainable AI for clinical and remote health applications: a survey on tabular and time series data

F Di Martino, F Delmastro - Artificial Intelligence Review, 2023 - Springer
Abstract Nowadays Artificial Intelligence (AI) has become a fundamental component of
healthcare applications, both clinical and remote, but the best performing AI systems are …

[HTML][HTML] Relation between prognostics predictor evaluation metrics and local interpretability SHAP values

ML Baptista, K Goebel, EMP Henriques - Artificial Intelligence, 2022 - Elsevier
Maintenance decisions in domains such as aeronautics are becoming increasingly
dependent on being able to predict the failure of components and systems. When data …

Sentiment analysis of customer reviews of food delivery services using deep learning and explainable artificial intelligence: Systematic review

A Adak, B Pradhan, N Shukla - Foods, 2022 - mdpi.com
During the COVID-19 crisis, customers' preference in having food delivered to their doorstep
instead of waiting in a restaurant has propelled the growth of food delivery services (FDSs) …

[HTML][HTML] Interpretable machine learning for imbalanced credit scoring datasets

Y Chen, R Calabrese, B Martin-Barragan - European Journal of …, 2024 - Elsevier
The class imbalance problem is common in the credit scoring domain, as the number of
defaulters is usually much less than the number of non-defaulters. To date, research on …

Interpretable machine learning with an ensemble of gradient boosting machines

AV Konstantinov, LV Utkin - Knowledge-Based Systems, 2021 - Elsevier
A method for the local and global interpretation of a black-box model on the basis of the well-
known generalized additive models is proposed. It can be viewed as an extension or a …

Statistical stability indices for LIME: Obtaining reliable explanations for machine learning models

G Visani, E Bagli, F Chesani, A Poluzzi… - Journal of the …, 2022 - Taylor & Francis
Nowadays we are witnessing a transformation of the business processes towards a more
computation driven approach. The ever increasing usage of Machine Learning techniques is …