A comprehensive survey of anomaly detection techniques for high dimensional big data

S Thudumu, P Branch, J Jin, J Singh - Journal of Big Data, 2020 - Springer
Anomaly detection in high dimensional data is becoming a fundamental research problem
that has various applications in the real world. However, many existing anomaly detection …

Outlier detection: Methods, models, and classification

A Boukerche, L Zheng, O Alfandi - ACM Computing Surveys (CSUR), 2020 - dl.acm.org
Over the past decade, we have witnessed an enormous amount of research effort dedicated
to the design of efficient outlier detection techniques while taking into consideration …

Anomaly detection in time series: a comprehensive evaluation

S Schmidl, P Wenig, T Papenbrock - Proceedings of the VLDB …, 2022 - dl.acm.org
Detecting anomalous subsequences in time series data is an important task in areas
ranging from manufacturing processes over finance applications to health care monitoring …

Progress in outlier detection techniques: A survey

H Wang, MJ Bah, M Hammad - Ieee Access, 2019 - ieeexplore.ieee.org
Detecting outliers is a significant problem that has been studied in various research and
application areas. Researchers continue to design robust schemes to provide solutions to …

TSB-UAD: an end-to-end benchmark suite for univariate time-series anomaly detection

J Paparrizos, Y Kang, P Boniol, RS Tsay… - Proceedings of the …, 2022 - dl.acm.org
The detection of anomalies in time series has gained ample academic and industrial
attention. However, no comprehensive benchmark exists to evaluate time-series anomaly …

[图书][B] An introduction to outlier analysis

CC Aggarwal, CC Aggarwal - 2017 - Springer
Outliers are also referred to as abnormalities, discordants, deviants, or anomalies in the data
mining and statistics literature. In most applications, the data is created by one or more …

A survey of outlier detection techniques in IoT: Review and classification

MA Samara, I Bennis, A Abouaissa… - Journal of Sensor and …, 2022 - mdpi.com
The Internet of Things (IoT) is a fact today where a high number of nodes are used for
various applications. From small home networks to large-scale networks, the aim is the …

Time series data cleaning: A survey

X Wang, C Wang - Ieee Access, 2019 - ieeexplore.ieee.org
Errors are prevalent in time series data, which is particularly common in the industrial field.
Data with errors could not be stored in the database, which results in the loss of data assets …

SAND: streaming subsequence anomaly detection

P Boniol, J Paparrizos, T Palpanas… - Proceedings of the VLDB …, 2021 - dl.acm.org
With the increasing demand for real-time analytics and decision making, anomaly detection
methods need to operate over streams of values and handle drifts in data distribution …

Fast memory efficient local outlier detection in data streams

M Salehi, C Leckie, JC Bezdek… - … on Knowledge and …, 2016 - ieeexplore.ieee.org
Outlier detection is an important task in data mining, with applications ranging from intrusion
detection to human gait analysis. With the growing need to analyze high speed data …