Multi-agent reinforcement learning: A selective overview of theories and algorithms

K Zhang, Z Yang, T Başar - Handbook of reinforcement learning and …, 2021 - Springer
Recent years have witnessed significant advances in reinforcement learning (RL), which
has registered tremendous success in solving various sequential decision-making problems …

Graph-based deep learning for medical diagnosis and analysis: past, present and future

D Ahmedt-Aristizabal, MA Armin, S Denman, C Fookes… - Sensors, 2021 - mdpi.com
With the advances of data-driven machine learning research, a wide variety of prediction
problems have been tackled. It has become critical to explore how machine learning and …

[HTML][HTML] Deep reinforcement learning in recommender systems: A survey and new perspectives

X Chen, L Yao, J McAuley, G Zhou, X Wang - Knowledge-Based Systems, 2023 - Elsevier
In light of the emergence of deep reinforcement learning (DRL) in recommender systems
research and several fruitful results in recent years, this survey aims to provide a timely and …

Graph neural network and reinforcement learning for multi‐agent cooperative control of connected autonomous vehicles

S Chen, J Dong, P Ha, Y Li… - Computer‐Aided Civil and …, 2021 - Wiley Online Library
A connected autonomous vehicle (CAV) network can be defined as a set of connected
vehicles including CAVs that operate on a specific spatial scope that may be a road network …

A review of cooperative multi-agent deep reinforcement learning

A Oroojlooy, D Hajinezhad - Applied Intelligence, 2023 - Springer
Abstract Deep Reinforcement Learning has made significant progress in multi-agent
systems in recent years. The aim of this review article is to provide an overview of recent …

多智能体深度强化学习的若干关键科学问题

孙长银, 穆朝絮 - 自动化学报, 2020 - aas.net.cn
强化学习作为一种用于解决无模型序列决策问题的方法已经有数十年的历史,
但强化学习方法在处理高维变量问题时常常会面临巨大挑战. 近年来, 深度学习迅猛发展 …

Colight: Learning network-level cooperation for traffic signal control

H Wei, N Xu, H Zhang, G Zheng, X Zang… - Proceedings of the 28th …, 2019 - dl.acm.org
Cooperation among the traffic signals enables vehicles to move through intersections more
quickly. Conventional transportation approaches implement cooperation by pre-calculating …

Multi-agent game abstraction via graph attention neural network

Y Liu, W Wang, Y Hu, J Hao, X Chen… - Proceedings of the AAAI …, 2020 - ojs.aaai.org
In large-scale multi-agent systems, the large number of agents and complex game
relationship cause great difficulty for policy learning. Therefore, simplifying the learning …

A survey of deep RL and IL for autonomous driving policy learning

Z Zhu, H Zhao - IEEE Transactions on Intelligent Transportation …, 2021 - ieeexplore.ieee.org
Autonomous driving (AD) agents generate driving policies based on online perception
results, which are obtained at multiple levels of abstraction, eg, behavior planning, motion …

Graph neural network: A comprehensive review on non-euclidean space

NA Asif, Y Sarker, RK Chakrabortty, MJ Ryan… - Ieee …, 2021 - ieeexplore.ieee.org
This review provides a comprehensive overview of the state-of-the-art methods of graph-
based networks from a deep learning perspective. Graph networks provide a generalized …