On a version of the slicing problem for the surface area of convex bodies

S Brazitikos, DM Liakopoulos - Transactions of the American Mathematical …, 2022 - ams.org
We study the slicing inequality for the surface area instead of volume. This is the question
whether there exists a constant $\alpha _n $ depending (or not) on the dimension $ n $ so …

Intrinsic volumes of ellipsoids

A Gusakova, E Spodarev, D Zaporozhets - arXiv preprint arXiv …, 2022 - arxiv.org
We deduce explicit formulae for the intrinsic volumes of an ellipsoid in $\mathbb R^ d $, $
d\ge 2$, in terms of elliptic integrals. Namely, for an ellipsoid ${\mathcal E}\subset\mathbb …

[PDF][PDF] Interplay between Geometric Analysis and Discrete Geometry

M Naszódi, N Frankl, D Oliveros, D Ryabogin… - 2023 - stats.birs.ca
Convexity, as a branch of classical mathematics, is located at the confluence of geometry,
analysis, topology and combinatorics. Although its origins can be traced back to Archimedes …

ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. ВА СТЕКЛОВА РАН

AG GUSAKOVA, E SPODAREV… - … ИНСТИТУТА ИМ. ВА …, 2022 - elibrary.ru
We deduce explicit formulae for the intrinsic volumes of an ellipsoid in $\mathbb R^ d $, $
d\ge 2$, in terms of elliptic integrals. Namely, for an ellipsoid ${\mathcal E}\subset\mathbb …